[1] |
Foster A, Gilbert C, Rahi J . Epidemiology of cataract in childhood: a global perspective. J Cataract Refract Surg, 1997,23(Suppl. 1):601-604.
doi: 10.1016/s0886-3350(97)80040-5
pmid: 9278811
|
[2] |
Gilbert C, Foster A . Childhood blindness in the context of VISION 2020--the right to sight. Bull World Health Organ, 2001,79(3):227-232.
pmid: 11285667
|
[3] |
Rahi JS, Sripathi S, Gilbert CE, Foster A . Childhood blindness in India: causes in 1318 blind school students in nine states. Eye(Lond), 1995,9(Pt 5):545-550.
doi: 10.1038/eye.1995.137
pmid: 8543070
|
[4] |
Tai F, Yu L, Zhao HX, Wang ML . Report of a Big Family of Marinesco-Sjögren Syndrome in 11 Case of Five Generation with X-Linked Recessive Inheritance. Hereditas (Beijing), 2001,23(5):409-741.
|
|
邰风, 于丽, 赵洪祥, 王明礼 . X连锁隐性遗传性Marinesco-Sjögren综合征一家系五代11例报告. 遗传, 2001,23(5):409-741.
|
[5] |
Wang F, Chen D, Jiao T, Yang HQ . New mutation of GJA8 gene in a family with congenital cataract in northern China. Rec Adv Ophthal, 2019,39(9):854-856.
|
|
王凡, 陈迪, 焦婷, 杨会琴 . 中国北方一先天性白内障家系GJA8基因新突变. 眼科新进展, 2019,39(9):854-856.
|
[6] |
Hu SS, Ma Z, Zhao BW, Lin H, Qi YH . Mechanism of mutation of lens major intrinsic protein causing congenital cataract. Rec Adv Ophthal, 2015,35(3):218-222.
|
|
胡姗姗, 马笮, 赵保文, 林辉, 齐艳华 . 晶状体主要内源性蛋白MIP的突变体致先天性白内障的发生机制. 眼科新进展, 2015,35(3):218-222.
|
[7] |
Imagawa E, Fukai R, Behnam M, Goyal M, Nouri N, Nakashima M, Tsurusaki Y, Saitsu H, Salehi M, Kapoor S, Tanaka F, Miyake N, Matsumoto N . Two novel homozygous RAB3GAP1 mutations cause warburg micro syndrome. Hum Genome Var, 2015,2:15034.
doi: 10.1038/hgv.2015.34
pmid: 27081543
|
[8] |
Yamashita T, Mitsui J, Shimozawa N, Takashima S, Umemura H, Sato K, Takemoto M, Hishikawa N, Ohta Y, Matsukawa T, Ishiura H, Yoshimura J , Doi K, Morishita S, Tsuji S, Abe K. Ataxic form of autosomal recessive PEX10- related peroxisome biogenesis disorders with a novel compound heterozygous gene mutation and characteristic clinical phenotype. J Neurol Sci, 2017, 375: 424-429.
doi: 10.1016/j.jns.2017.02.058
pmid: 28320181
|
[9] |
De Franco E, Flanagan SE, Yagi T, Abreu D, Mahadevan J, Johnson MB, Jones G, Acosta F, Mulaudzi M, Lek N, Oh V, Petz O, Caswell R, Ellard S, Urano F, Hattersley AT . Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes, 2017,66(7):2044-2053.
doi: 10.2337/db16-1296
pmid: 28468959
|
[10] |
Huang KM, Wu JH, Brooks SP, Hardcastle AJ, Lewis RA, Stambolian D . Identification of three novel NHS mutations in families with Nance-Horan syndrome. Mol Vis, 2007,13:470-474.
pmid: 17417607
|
[11] |
Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, Cheng A, Billson FA, Martin F, Fraser C, Mowat D, Smith J, Christodoulou J, Flaherty M, Bennetts B, Jamieson RV . Familial congenital cataracts: mutational Spectrum and new diagnoses using next-generation sequencing. Hum Mutat, 2016,37(4):371-384.
doi: 10.1002/humu.22948
pmid: 26694549
|
[12] |
Patel N, Anand D, Monies D, Maddirevula S, Khan AO, Algoufi T, Alowain M, Faqeih E, Alshammari M, Qudair A, Alsharif H, Aljubran F, Alsaif HS, Ibrahim N, Abdulwahab FM, Hashem M, Alsedairy H, Aldahmesh MA, Lachke SA, Alkuraya FS . Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet, 2017,136(2):205-225.
doi: 10.1007/s00439-016-1747-6
pmid: 27878435
|
[13] |
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, Mackey DA, Staffieri SE, Elder JE, Taranath D, Straga T, Black J, Pater J, Casey T, Hewitt AW, Burdon KP . High-throughput genetic screening of 51 pediatric cataract genes identifies causative mutations in inherited pediatric cataract in south eastern Australia. G3 (Bethesda), 2017,7(10):3257-3268.
doi: 10.1534/g3.117.300109
pmid: 28839118
|
[14] |
Gillespie RL , O'Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, Kehdi E, Ramsden SC, Clayton- Smith J, Black GC, Lloyd IC. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology, 2014,121(11):2124-2137.
doi: 10.1016/j.ophtha.2014.06.006
|
[15] |
Liu YQ, Zhu X, Li SJ, Yang YM, Yang Mu, Zhao PQ, Zhu XJ . Identification of LRP5 mutations in families with familial exudative vitreoretinopathy. Hereditas(Beijing), 2017,39(3):241-249.
|
|
刘玉庆, 朱雄, 李姝锦, 杨业明, 杨牧, 赵培泉, 朱献军 . 家族性渗出性玻璃体视网膜病变患者LRP5基因突变研究. 遗传, 2017,39(3):241-249.
|
[16] |
Yang XL, Su YH, Li WL . Progress in animal models for inherited cataract. Hereditas(Beijing), 2007,29(2):137-144.
doi: 10.1360/yc-007-0137
pmid: 17369166
|
|
杨秀兰, 苏玉虹, 李文龙 . 遗传性白内障动物模型的研究进展. 遗传, 2007,29(2):137-144.
doi: 10.1360/yc-007-0137
pmid: 17369166
|
[17] |
Bu L, Jin YP, Shi YF, Chu RY, Ban AR, Eiberg H, Andres L, Jiang HS, Zheng GR, Qian MQ, Cui B, Xia Y, Liu J, Hu LD, Zhao GP, Hayden MR, Kong XY . Mutant DNA- binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet, 2002,31(3):276-278.
doi: 10.1038/ng921
pmid: 12089525
|
[18] |
Sun H, Ma Z, Li Y, Liu B, Li Z, Ding X, Gao Y, Ma W, Tang X, Li X, Shen Y . Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet, 2005,42(9):706-710.
doi: 10.1136/jmg.2004.028274
pmid: 16141006
|
[19] |
Zhang TX, Hua R, Xiao W, Burdon KP, Bhattacharya SS, Craig JE, Shang DD, Zhao XL, Mackey DA, Moore AT, Luo Y, Zhang JS, Zhang X . Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum Mutat, 2009,30(5):E603-E611.
doi: 10.1002/humu.20995
pmid: 19306328
|
[20] |
Chen P, Dai YH, Wu XM, Wang Y, Sun SY, Xiao JJ, Zhang QY, Guan LP, Zhao XW, Hao XD, Wu RH, Xie LX . Mutations in the ABCA3 gene are associated with cataract-microcornea syndrome. Invest Ophthalmol Vis Sci, 2014,55(12):8031-8043.
doi: 10.1167/iovs.14-14098
pmid: 25406294
|
[21] |
Sun M, Chen C, Hou S, Li X, Wang H, Zhou J, Chen X, Liu P, Kijlstra A, Lin S, Ye J . A novel mutation of PANK4 causes autosomal dominant congenital posterior cataract. Hum Mutat, 2019,40(4):380-391.
doi: 10.1002/humu.23696
pmid: 30585370
|
[22] |
Scaiola A, Peña C, Weisser M, Böhringer D, Leibundgut M, Klingauf-Nerurkar P, Gerhardy S, Panse VG, Ban N . Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit. EMBO J, 2018,37(7):e98499.
doi: 10.15252/embj.201798499
pmid: 29459436
|
[23] |
Wolf L, Harrison W, Huang J, Xie Q, Xiao NN, Sun J, Kong LK, Lachke SA, Kuracha MR, Govindarajan V, Brindle PK, Ashery-Padan R, Beebe DC, Overbeek PA, Cvekl A . Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res, 2013,41(22):10199-10214.
doi: 10.1093/nar/gkt824
pmid: 24038357
|
[24] |
Farrar JE, Quarello P, Fisher R , O'Brien KA, Aspesi A, Parrella S, Henson AL, Seidel NE, Atsidaftos E, Prakash S, Bari S, Garelli E, Arceci RJ, Dianzani I, Ramenghi U, Vlachos A, Lipton JM, Bodine DM, Ellis SR. Exploiting pre-rRNA processing in Diamond Blackfan anemia gene discovery and diagnosis. Am J Hematol, 2014,89(10):985-991.
doi: 10.1002/ajh.23807
pmid: 25042156
|
[25] |
Martinez-Azorin F, Remacha M, Ballesta JP . Functional characterization of ribosomal P1/P2 proteins in human cells. Biochem J, 2008,413(3):527-534.
doi: 10.1042/BJ20080049
pmid: 18422483
|
[26] |
Mirabello L, Macari ER, Jessop L, Ellis SR, Myers T, Giri N, Taylor AM , McGrath KE, Humphries JM, Ballew BJ, Yeager M, Boland JF, He J, Hicks BD, Burdett L, Alter BP, Zon L, Savage SA. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood, 2014,124(1):24-32.
doi: 10.1182/blood-2013-11-540278
pmid: 24829207
|
[27] |
Arthurs C, Murtaza BN, Thomson C, Dickens K, Henrique R, Patel HRH, Beltran M, Millar M, Thrasivoulou C, Ahmed A . Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS One, 2017,12(10):e0186047.
doi: 10.1371/journal.pone.0186047
pmid: 29016636
|
[28] |
Zhang WY, Hawse J, Huang QL, Sheets N, Miller KM, Horwitz J, Kantorow M . Decreased expression of ribosomal proteins in human age-related cataract. Invest Ophthalmol Vis Sci, 2002,43(1):198-204.
pmid: 11773032
|
[29] |
Hayes SD, Liu H , MacDonald E, Sanderson CM, Coulson JM, Clague MJ, Urbé S. Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/ RAF1 kinase, by the deubiquitylating enzyme USP15. J Biol Chem, 2012,287(51):43007-43018.
doi: 10.1074/jbc.M112.386938
pmid: 23105109
|
[30] |
Zhang Y, Huang WR . Sanguinarine induces apoptosis of human lens epithelial cells by increasing reactive oxygen species via the MAPK signaling pathway. Mol Med Rep, 2019,19(5):4449-4456.
doi: 10.3892/mmr.2019.10087
pmid: 30942394
|