遗传 ›› 2020, Vol. 42 ›› Issue (1): 73-86.doi: 10.16288/j.yczz.19-326

• 三维基因组专栏 • 上一篇    下一篇

植物三维染色质构型研究进展

董芊里, 王金宾, 李晓宠, 宫磊()   

  1. 东北师范大学生命科学学院,分子表观遗传学教育部重点实验室,长春 130024
  • 收稿日期:2019-10-29 修回日期:2019-12-19 出版日期:2020-01-20 发布日期:2019-12-27
  • 通讯作者: 宫磊 E-mail:gongl100@nenu.edu.cn
  • 作者简介:董芊里,博士研究生,专业方向:遗传学。E-mail: dongql043@nenu.edu.cn|王金宾,博士研究生,专业方向:遗传学。E-mail: wangjb702@nenu.edu.cn|李晓宠,博士研究生,专业方向:遗传学。E-mail:lixc800@nenu.edu.cn; 董芊里、王金宾和李晓宠并列第一作者
  • 基金资助:
    国家重点研发计划项目编号(2016YFD0101004);国家自然科学基金项目编号(31670220);2015“长白山学者计划”特聘教授专项资助

Progresses in the plant 3D chromatin architecture

Qianli Dong, Jinbin Wang, Xiaochong Li, Lei Gong()   

  1. Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
  • Received:2019-10-29 Revised:2019-12-19 Online:2020-01-20 Published:2019-12-27
  • Contact: Gong Lei E-mail:gongl100@nenu.edu.cn
  • Supported by:
    Supported by the National Key Research and Development Program of China No(2016YFD0101004);the National Natural Science Foundation of China No(31670220);the Program of Changbai Mountain Scholar

摘要:

染色质在细胞核内的缠绕、折叠及其在细胞核内的空间排布是真核生物染色质构型的主要特征。在经典DNA探针荧光原位杂交显微观察的基础上,基于新一代测序技术的Hi-C及ChIA-PET染色质构型捕获技术已经被广泛应用于动物及植物细胞核染色质构型的研究中,并以新的角度定义了包括:染色体(质)域(chromosome territory)、A/B染色质区室(compartment A/B)、拓扑偶联结构域(topological associated domains, TADs)、染色质环(chromatin loops)等在内的多个更为精细的染色质构型。利用以上两种主流技术,越来越多的植物物种染色质构型特征被鉴定、分析和比较。本文系统分析和总结了近年来以植物细胞为模型的细胞核染色构型领域取得的重要成果,包括各级染色质构型特征的组成、建立机制和主要影响因素等。在此基础上,分析了目前研究植物染色质构型技术的瓶颈和突破性的技术进展,并对后续研究主要关注的问题和研究内容进行了展望,以期为相关领域的研究提供更多的理论参考和依据。

关键词: 染色质构型, 高通量染色质构象捕获测序, 末端配对标签测序, 染色质区室, 拓扑偶联结构域

Abstract:

Chromatin architecture involves the patterns of chromatin coiling and packing as well as the mutual relative allocations of different chromatins. Besides the canonical microscopic observations, the chromatin architectural capture techniques, including the Hi-C and ChIA-PET, have been widely applied in characterization of chromatin architecture in various plant and animal model species, in which chromatin architectural features, such as the chromosome territory, compartment A/B, topological associated domains (TADs) and chromatin loops, were defined. As for the studies in plant species, replying on the two techniques above (with differences in experimental techniques and data structures), scientists have compared the variation of specific chromatin architecture features across species and/or in different cell types of the same plant species, besides detailed analyses in each individual model. Here, we mainly review the recent progresses in studies of plant chromatin architectures, in which their composition, establishing mechanism and effective factors were described and discussed. We also propose the main technical bottlenecks, describe the breaking-through progresses, and anticipate future research directions, which may offer more theoretical references for related researches in the field.

Key words: chromatin architecture, high-throughput chromosome conformation capture (Hi-C), chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), compartment A/B, topological associated domains (TAD)