遗传 ›› 2020, Vol. 42 ›› Issue (9): 858-869.doi: 10.16288/j.yczz.20-173

• 综述 • 上一篇    下一篇

植物激素水杨酸生物合成和信号转导研究进展

谷晓勇, 刘扬, 刘利静()   

  1. 山东大学生命科学学院,青岛 266237
  • 收稿日期:2020-06-12 修回日期:2020-07-14 出版日期:2020-09-20 发布日期:2020-08-31
  • 通讯作者: 刘利静 E-mail:ljliu@sdu.edu.cn
  • 作者简介:谷晓勇,硕士,助理实验师,研究方向:植物免疫。E-mail: guxy18@sdu.edu.cn
  • 基金资助:
    山东大学齐鲁青年学科建设经费项目资助编号(11200087963080)

Progress on the biosynthesis and signal transduction of phytohormone salicylic acid

Xiaoyong Gu, Yang Liu, Lijing Liu()   

  1. School of Life Sciences, Shandong University, Qingdao 266237, China
  • Received:2020-06-12 Revised:2020-07-14 Online:2020-09-20 Published:2020-08-31
  • Contact: Liu Lijing E-mail:ljliu@sdu.edu.cn
  • Supported by:
    Supported by the Qilu Scholarship from Shandong University No(11200087963080)

摘要:

植物激素水杨酸(salicylic acid,SA)是广泛存在于植物体中的小分子酚类物质,参与植物多种生理过程,特别是在植物免疫中发挥重要功能。植物免疫过程中体内SA大量合成,SA信号通路被激活从而诱导抗病相关基因表达。近年来,随着研究的不断深入,SA生物合成和信号转导都取得一系列重要进展:进一步完善了SA生物合成的异分支酸合酶(isochorismate synthase, ICS)和苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL)途径;明确了NPR1 (nonexpresser of PR genes 1)和其同源蛋白NPR3、NPR4是植物接收SA的受体;发现II类TGA (TGACG-binding factor)转录因子通过与不同SA受体互作激活或抑制下游基因表达等。本文系统介绍了SA生物合成和信号转导领域的相关进展,以期为深入研究SA调控植物生长发育和环境胁迫响应提供理论参考。

关键词: 水杨酸, 水杨酸生物合成, 水杨酸受体, 水杨酸信号转导

Abstract:

The phenolic phytohormone salicylic acid (SA) is widely produced in plants, and is a key player in many processes of plant physiology, especially in plant immunity. During pathogen infection, SA is accumulated and the SA signaling pathway is activated to induce the expression of defense-related genes. Recently, a series of SA-related studies have been published. These researches filled gaps in the two SA biosynthesis pathways: the isochorismate synthase (ICS) pathway and the phenylalanine ammonia-lyase (PAL) pathway. The NPR1 (nonexpresser of PR genes 1) and its paralogs, NPR3 and NPR4, were identified as SA receptors. The effect of type II TGAs (TGACG-binding factor) on SA downstream genes was shown to depend on the SA receptor they interacted with. This review will systematically introduce the progress on SA biosynthesis and signal transduction, aiming to provide a theoretical reference for in-depth study of SA regulation on plant development and defense responses.

Key words: salicylic acid, salicylic acid biosynthesis, salicylic acid receptors, salicylic acid signal transduction