遗传 ›› 2021, Vol. 43 ›› Issue (5): 501-519.doi: 10.16288/j.yczz.20-391
收稿日期:
2020-11-18
修回日期:
2021-02-08
出版日期:
2021-05-20
发布日期:
2021-03-19
作者简介:
王剑飞,在读硕士研究生,专业方向:孤独症致病机制。E-mail: 基金资助:
Jianfei Wang, Junhai Han, Zichao Zhang()
Received:
2020-11-18
Revised:
2021-02-08
Online:
2021-05-20
Published:
2021-03-19
Supported by:
摘要:
孤独症谱系障碍(autism spectrum disorder, ASD)是一种遗传相关的神经系统发育性疾病,患者主要呈现社交缺陷、沟通障碍、重复刻板行为和学习记忆障碍等核心症状。小鼠模型是探究孤独症谱系障碍的致病机理和寻找潜在治疗方法的重要工具,而小鼠行为学的观测和分析可以帮助人们更好地了解不同遗传操作对相应孤独症表型的影响,从而阐释疾病机理。本文列举了针对孤独症患者核心缺陷的相关小鼠行为学分析方法,包括检测社交缺陷的三厢社交实验、居住者-入侵者实验、筑巢实验和超声波检测;检测重复刻板行为的Y迷宫自主选择实验、捋毛实验、刻板行为分析实验和弹珠埋藏实验;检测焦虑行为的旷场实验、高架十字迷宫实验和明暗穿梭实验;检测学习和记忆障碍的新事物选择实验和水迷宫实验。本文详细描述了这些行为学实验的标准操作流程、注意事项以及规范的数据分析方法,可以帮助研究人员进行相关实验设计。同时本文对已知孤独症小鼠遗传模型中的各项行为学表型进行了汇总和比较,为相关研究人员提供系统参照。
王剑飞, 韩俊海, 张子超. 孤独症谱系障碍小鼠模型行为学检测方法[J]. 遗传, 2021, 43(5): 501-519.
Jianfei Wang, Junhai Han, Zichao Zhang. Behavioral analyses in mouse models of autism spectrum disorders[J]. Hereditas(Beijing), 2021, 43(5): 501-519.
表1
ASD小鼠模型社交行为检测"
小鼠模型 | 基因ID | 三厢社交实验 | 居住者-入侵者实验 | 筑巢实验 | 母子分离/求偶实验 | 参考文献 |
---|---|---|---|---|---|---|
Mecp2-/y | 17257 | TE >TS, TS2< TS1 | S=0.5WT | NU、TU↑, Cu↓ | [ | |
Shank1 | 243961 | TE<TS | NS=WT | NU1↓ | [ | |
Shank2-/- | 210274 | TE>TS, TS2>TS1 | S=0.5WT | NU、NU1↓ | [ | |
Shank3e4-9 | 58234 | TE>TS, TS2<TS1 | NU1↓ | [ | ||
Shank3e13 | 58234 | TE<TS, TS2<TS1 | NS=WT | [ | ||
Shank3B-/- | 58234 | TE>TS, TS2≈TS1 | NS=0.5WT | [ | ||
Fmr1-/y | 14265 | TE>TS, TS2<TS1 | NA=4WT, NS=2WT | NU、TU、NU1、TU1↓ | [ | |
Trim32-/- | 69807 | TE<TS, TS2≈TS1 | NS=0.5WT | S=0.6WT | [ | |
Gabrb3+/- | 14402 | TE>TS, TS2<TS1 | S=0.6WT | [ | ||
Arid1b+/- | 239985 | TE≈TS, TS2<TS1 | NS=0.6WT | TU ↑ | [ | |
Pax2+/- | 18504 | TE<TS | [ | |||
Syngap+/- | 240057 | TE≈TS, TS2≈TS1 | NS=0.9WT | [ | ||
Cntnap2-/- | 66797 | TE≈TS | S=0.3WT | NU、NU1↓ | [ | |
Chd8+/- | 67772 | TE<TS, TS2>TS1 | NS=WT | S=WT | [ | |
Cttnbp2-/- | 30785 | TE≈TS, TS2≈TS1 | NS=0.5WT | NU、TU↓ | [ | |
Dlg2-/- | 23859 | TE≈TS, TS2>TS1 | NS=0.5WT | [ | ||
Nexmif -/- | 2455555 | TE≈TS, TS2≈ TS1 | [ | |||
Nrxn1α-/- | 18189 | TE<TS, TS2>TS1 | NA=3WT | NU、TU↓, Cu↓ | [ | |
Nlgn3R451C | 245537 | TE<TS, TS2>TS1 | NA=2WT | NU、NU1↓ | [ | |
Nlgn4-/- | 100113365 | TE>TS, TS2<TS1 | NA=0.5WT | S=0.7WT | NU1↓ | [ |
Nlgn1-/- | 192167 | TE<TS, TS2<TS1 | NS=0.7WT | S=0.6WT | NU↑ | [ |
Pten+/- | 19211 | TE≈TS, TS2≈TS1 | NA>10WT | NU、TU↓ | [ | |
Pten-/- | 19211 | TE≈TS | NS=0.5WT | [ | ||
Tsc1-/- Tsc1+/- | 64930 | TE≈TS, TS2≈TS1 | [ | |||
Tsc2+/- | 22084 | TE≈TS, TS2≈TS1 | [ | |||
CBPΔCH1/ΔCH1 | 94212 | TE≈TS | NA=2WT | S=0.5WT | [ | |
En2-/- | 13799 | NS=0.3WT | [ | |||
4E-BP2-/- | 13688 | TE>TS | NU、TU↑, Cu、NU1↓ | [ | ||
Oxt-/- | 18429 | TE<TS, TS2>TS | NU、TU↓ | [ | ||
Foxp2 | 114142 | NS=0.6WT | NU↓ | [ | ||
15q11-13 | TE≈TS, TS2≈TS1 | NU↑, NU1↓ | [ | |||
17p11.2 | TE<TS, TS2>TS | NA=6WT | S=0.5WT | NU、TU↓ | [ | |
VPA | TE≈TS | NS=0.6WT | [ | |||
BTBR | TE>TS, TS2<TS1 | NS=0.4WT | NU、TU↑, Cu、NU1↓ | [ | ||
BALB | TE>TS, TS2>TS1 | NS↓ | [ | |||
C58/J | TE>TS, TS2>TS1 | TU↓ | [ |
表2
ASD小鼠重复刻板行为检测"
小鼠模型 | 基因ID | 捋毛实验 | Y-迷宫自主选择实验 | 刻板行为分析实验 | 弹珠埋藏实验 | 参考文献 |
---|---|---|---|---|---|---|
Shank1 | 243961 | TG=WT | [ | |||
Shank2-/- | 210274 | TG=2.5WT | Nc↑ | [ | ||
Shank3e4-9 | 58234 | TG=8WT | Nb=0.5WT | [ | ||
Shank3e13 | 58234 | TG=2.5WT | Nb=WT | [ | ||
Shank3B-/- | 58234 | TG=2WT | Nb=0.4WT | [ | ||
Fmr1-/y | 14265 | TG=2WT | Nc↑ | [ | ||
Trim32-/- | 69807 | TG=3WT | R=1.3WT | [ | ||
Gabrb3+/- | 14402 | Nc↑ | [ | |||
Arid1b+/- | 239985 | TG=6WT | Nb=WT | [ | ||
Pax2+/- | 18504 | TG=3WT | R≈WT | [ | ||
Syngap+/- | 240057 | R=2WT | Nc↑ | [ | ||
Cntnap2+/- | 66797 | TG=4WT | R=3WT | [ | ||
Chd8+/- | 67772 | TG=WT | Nb=WT | [ | ||
Cttnbp2-/- | 30785 | TG=WT | 无差异 | Nb=2WT | [ | |
Dlg2-/- | 23859 | TG=2WT | [ | |||
Nexmif -/- | 2455555 | TG=2.5WT | [ | |||
Nrxn1α-/- | 18189 | TG=2WT | Nc↑ | Nb=WT | [ | |
Nlgn3R451C | 245537 | TG=WT | Nc↑ | [ | ||
Nlgn4-/- | 100113365 | TG=WT | [ | |||
Nlgn1-/- | 192167 | TG=2WT | 无差异 | Nb=WT | [ | |
Pten+/- | 19211 | Nb=1.5WT | [ | |||
Pten-/- | 19211 | TG=0.5WT | [ | |||
Tsc1-/- Tsc1+/- | 64930 | TG=2.5WT | R=2WT | [ | ||
Tsc2+/- | 22084 | Nb=1.25WT | [ | |||
CBPΔCH1/ΔCH1 | 94212 | TG=8WT | Nc↑ | [ | ||
En2-/- | 13799 | TG=3WT | [ | |||
4E-BP2-/- | 13688 | TG=2WT | Nb=2WT | [ | ||
BTBR | TG=4WT | Nb=2WT | [ | |||
C58/J | TG=3WT | Nc↑ | Nb=0.4WT | [ |
表3
ASD小鼠焦虑、学习记忆行为检测"
小鼠模型 | 基因ID | 旷场实验 | 高架十字迷宫实验 | 明暗穿梭实验 | 新事物识别实验 | 水迷宫实验 | 参考文献 |
---|---|---|---|---|---|---|---|
Mecp2-/y | 17257 | Rt=0.5WT | Rto=0.5WT | TN>TF | [ | ||
Shank1 | 243961 | Rt=0.6WT | Rto=WT | Nl=0.5WT | TN>TF | TL=WT, NT=WT | [ |
Shank2-/- | 210274 | Rto=0.5WT | TN>TF | TL=1.5WT, NT=0.5WT | [ | ||
Shank3e4-9 | 58234 | V=0.5WT | Tl=WT | TL>1.5WT, NT<WT | [ | ||
Shank3e13 | 58234 | Rt=0.7WT | Rto=0.5WT | Tl=WT | TL=WT, NT=WT | [ | |
Shank3B-/- | 58234 | Rto=0.5WT | TL=1.6WT, NT=0.25WT | [ | |||
Arid1b+/- | 239985 | V=0.25WT | Rto=0.25WT | Tl=0.6WT | TN=TF | TL=3WT, NT=0.4WT | [ |
Pax2+/- | 18504 | Rto=WT | [ | ||||
Syngap+/- | 240057 | Rt=1.3WT | Rto=1.5WT | Tl=WT | [ | ||
Cntnap2-/- | 66797 | V=1.5WT | Tl=WT | TL=WT, NT=WT | [ | ||
Chd8+/- | 67772 | Rt=0.5WT | Rto=0.3WT | Tl= 0.66WT | [ | ||
Cttnbp2-/- | 30785 | Rt=1.2WT | Rto=1.3WT | TN=TF | [ | ||
Dlg2-/- | 23859 | Rt=0.5WT | Rto=WT | Tl=0.5WT | [ | ||
Nexmif -/- | 2455555 | Rt=2WT | [ | ||||
Nrxn1α-/- | 18189 | Rt=WT | Rto=WT | TL=WT, NT=WT | [ | ||
Nlgn3R451C | 245537 | Rt=WT | Rto=WT | Tl=WT | [ | ||
Nlgn4-/- | 100113365 | Rt=WT | Rto=WT | TL=WT, NT=WT | [ | ||
Nlgn1-/- | 192167 | Rt=WT | Rto=WT | Tl=WT | TN>TF | TL=WT, NT=0.3WT | [ |
Pten-/- | 19211 | Rt=0.5WT | TL=WT, NT=WT | [ | |||
Tsc2+/- | 22084 | Rt=0.5WT | TL=1.5WT, NT=0.5WT | [ | |||
CBPΔCH1/ΔCH1 | 94212 | Rt=WT | Rto=WT | TN=TF | [ | ||
En2-/- | 13799 | TN<TF | TL=2WT, NT=0.7WT | [ | |||
4E-BP2-/- | 13688 | Rt=WT | Rto=WT | Nl=0.5WT | [ | ||
Foxp2 | Rt=WT | Rto=WT | [ | ||||
15q11-13 | TL=WT, NT=WT | [ | |||||
17p11.2 | Rt=0.7WT | Rto=0.5WT | [ | ||||
VPA | Rt=0.2WT | Rto=0.5WT | TL=3WT, NT=0.3WT | [ | |||
BTBR | Rt=0.5WT | Rto=0.7WT | Tl=WT | TN<TF | TL=WT, NT=0.8WT | [ | |
C58/J | Rt=0.5WT | Rto=0.5WT | TN<TF | [ |
[1] | Mattila ML, Kielinen M, Linna SL, Jussila K, Ebeling H, Bloigu R, Joseph RM, Moilanen I . Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry, 2011,50(6):583-592. |
[2] | Lai MC, Lombardo MV, Baron-Cohen S . Autism. Lancet, 2014,383(9920):896-910. |
[3] | Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, Murtha MT, Bal VH, Bishop SL, Dong S, Goldberg AP, Jinlu C, Keaney JR, Klei L, Mandell JD, Moreno-De-Luca D, Poultney CS, Robinson EB, Smith L, Solli-Nowlan T, Su MY, Teran NA, Walker MF, Werling DM, Beaudet AL, Cantor RM, Fombonne E, Geschwind DH, Grice DE, Lord C, Lowe JK, Mane SM, Martin DM, Morrow EM, Talkowski ME, Sutcliffe JS, Walsh CA, Yu TW, Ledbetter DH, Martin CL, Cook EH, Buxbaum JD, Daly MJ, Devlin B, Roeder K, State MW. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 2015,87(6):1215-1233. |
[4] | Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, Peng M, Collins R, Grove J, Klei L, Stevens C, Reichert J, Mulhern MS, Artomov M, Gerges S, Sheppard B, Xu X, Bhaduri A, Norman U, Brand H, Schwartz G, Nguyen R, Guerrero EE, Dias C, Betancur C, Cook EH, Gallagher L, Gill M, Sutcliffe JS, Thurm A, Zwick ME, Borglum AD, State MW, Cicek AE, Talkowski ME, Cutler DJ, Devlin B, Sanders SJ, Roeder K, Daly MJ, Buxbaum JD . Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 2020,180(3):568-584. |
[5] | Berg R . Autism--an environmental health issue after all?. J Environ Health, 2009,71(10):14-18. |
[6] | Zhou RY, Dang WL, Zhou Z, Li HW, Zhang X . Advances in research of animal models of autism spectrum disorders. Acta Lab Anim Sci Sin, 2019,27(3):380-386 |
周荣易, 党伟利, 周正, 李华伟, 张晰 . 孤独症谱系障碍动物模型研究进展. 中国实验动物学报, 2019,27(3):380-386. | |
[7] | Crawley JN . Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol, 2007,17(4):448-459. |
[8] | Hollis F, Kabbaj M . Social defeat as an animal model for depression. Ilar J, 2014,55(2):221-232. |
[9] | Orefice LL, Zimmerman AL, Chirila AM, Sleboda SJ, Head JP, Ginty DD . Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell, 2016,166(2):299-313. |
[10] | Deacon RM . Assessing nest building in mice. Nat Protoc, 2006,1(3):1117-1119. |
[11] | Ravizza SM, Solomon M, Ivry RB, Carter CS . Restricted and repetitive behaviors in autism spectrum disorders: the relationship of attention and motor deficits. Dev Psychopathol, 2013,25(3):773-784. |
[12] | Premoli M, Memo M, Bonini SA . Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res, 2021,16(6):1158-1167. |
[13] | Panksepp JB, Lahvis GP . Social reward among juvenile mice. Genes Brain Behav, 2007,6(7):661-671. |
[14] | Egnor SR, Seagraves KM . The contribution of ultrasonic vocalizations to mouse courtship. Curr Opin Neurobiol, 2016,38:1-5. |
[15] | Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW, Golshani P, Geschwind DH . Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med, 2015,7(271):271r-278r. |
[16] | Zala SM, Reitschmidt D, Noll A, Balazs P, Penn DJ . Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus). PLoS One, 2017,12(12):e188647. |
[17] | Yan T, He B, Wan S, Xu M, Yang H, Xiao F, Bi K, Jia Y . Antidepressant-like effects and cognitive enhancement of Schisandra chinensis in chronic unpredictable mild stress mice and its related mechanism. Sci Rep, 2017,7(1):6903. |
[18] | Hoeffer CA, Tang W, Wong H, Santillan A, Patterson RJ, Martinez LA, Tejada-Simon MV, Paylor R, Hamilton SL, Klann E . Removal of FKBP12 enhances mTOR- Raptor interactions, LTP, memory, and perseverative/ repetitive behavior. Neuron, 2008,60(5):832-845. |
[19] | Ru M, Liu H . Association between Y-maze acquisition learning and major histocompatibility complex class ii polymorphisms in mice. Biomed Res Int, 2018,2018:6381932. |
[20] | Berridge KC, Aldridge JW, Houchard KR, Zhuang XX . Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. Bmc Biol, 2005,3:4. |
[21] | Bursten SN, Berridge KC, Owings DH . Do California ground squirrels (Spermophilus beecheyi) use ritualized syntactic cephalocaudal grooming as an agonistic signal?. J Comp Psychol, 2000,114(3):281-290. |
[22] | Kanner L . The conception of wholes and parts in early infantile autism. Am J Psychiatry, 1951,108(1):23-26. |
[23] | Ellegood J, Crawley JN . Behavioral and neuroanatomical phenotypes in mouse models of autism. Neurotherapeutics, 2015,12(3):521-533. |
[24] | Simmons DH, Titley HK, Hansel C, Mason P. Behavioral tests for mouse models of autism: an argument for the inclusion of cerebellum-controlled motor behaviors. Neuroscience, 2020, S0306-4522(20):30304. |
[25] | Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R . Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology (Berl), 2009,204(2):361-373. |
[26] | Markowska AL, Stone WS, Ingram DK, Reynolds J, Gold PE, Conti LH, Pontecorvo MJ, Wenk GL, Olton DS . Individual differences in aging: behavioral and neurobiological correlates. Neurobiol Aging, 1989,10(1):31-43. |
[27] | Rodgers RJ . Animal models of 'anxiety': where next?. Behav Pharmacol, 1997, 8(6-7): 477-496, 497-504. |
[28] | Pellow S, Chopin P, File SE, Briley M . Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods, 1985,14(3):149-167. |
[29] | Takao K, Miyakawa T . Light/dark transition test for mice. J Vis Exp, 2006, ( 1):104. |
[30] | Ennaceur A, Delacour J . A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res, 1988,31(1):47-59. |
[31] | Tomas PI, Burwell RD . Using the spatial learning index to evaluate performance on the water maze. Behav Neurosci, 2015,129(4):533-539. |
[32] | Wang SS, Yan Y, Zhao YS . Interventions for social skills in autism spectrum disorders: a meta-analysis of effects and influencing factors. Chin J Spec Edu, 2019, ( 10):43-51. |
汪斯斯, 闫燕, 赵勇帅 . 自闭症谱系障碍群体社交技能的干预: 效果及其影响因素的元分析. 中国特殊教育, 2019, ( 10):43-51. | |
[33] | Naviaux JC, Wang L, Li K, Bright AT, Alaynick WA, Williams KR, Powell SB, Naviaux RK . Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout) mouse model. Mol Autism, 2015,6:1. |
[34] | Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, Rubenstein JL, Scheuer T, de la Iglesia HO, Catterall WA. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature, 2012,489(7416):385-390. |
[35] | Zhu JW . TRIM32 deficiency leads to autistic behaviors in mice[Dissertation]. Southern Medical University, 2016. |
朱健伟 . TRIM32的缺失导致小鼠自闭症样行为的实验研究[学位论文]. 南方医科大学, 2016. | |
[36] | Burrows EL, Laskaris L, Koyama L, Churilov L, Bornstein JC, Hill-Yardin EL, Hannan AJ . A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Mol Autism, 2015,6:62. |
[37] | Hess SE, Rohr S, Dufour BD, Gaskill BN, Pajor EA, Garner JP . Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. J Am Assoc Lab Anim Sci, 2008,47(6):25-31. |
[38] | Chabout J, Serreau P, Ey E, Bellier L, Aubin T, Bourgeron T, Granon S . Adult male mice emit context- specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One, 2012,7(1):e29401. |
[39] | Brunner D, Kabitzke P, He D, Cox K, Thiede L, Hanania T, Sabath E, Alexandrov V, Saxe M, Peles E, Mills A, Spooren W, Ghosh A, Feliciano P, Benedetti M, Luo CA, Biemans B . Comprehensive analysis of the 16p11. 2 deletion and null cntnap2 mouse models of autism spectrum disorder. PLoS One. 2015,10(8):e134572. |
[40] | Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH . Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 2011,147(1):235-246. |
[41] | Ning N, Zhang YS, Yang GX . A review of the researches into restricted and repetitive behaviors of children with autism spectrum disorder. Chin J Spec Edu, 2015, ( 2):46-52. |
宁宁, 张永盛, 杨广学 . 自闭症谱系障碍儿童重复刻板行为研究综述. 中国特殊教育, 2015, ( 2):46-52. | |
[42] | Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G . Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 2011,472(7344):437-442. |
[43] | Moy SS, Riddick NV, Nikolova VD, Teng BL, Agster KL, Nonneman RJ, Young NB, Baker LK, Nadler JJ, Bodfish JW . Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behav Brain Res, 2014,259:200-214. |
[44] | Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB, Vasuta C, Yee S, Truitt M, Dallaire P, Major F, Lasko P, Ruggero D, Nader K, Lacaille JC, Sonenberg N . Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 2013,493(7432):371-377. |
[45] | Steimer T . Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci, 2011,13(4):495-506. |
[46] | Walz K, Spencer C, Kaasik K, Lee CC, Lupski JR, Paylor R . Behavioral characterization of mouse models for Smith-Magenis syndrome and dup(17)(p11. 2p11. 2). Hum Mol Genet, 2004,13(4):367-378. |
[47] | Seo JH . Treadmill exercise alleviates stress-induced anxiety-like behaviors in rats. J Exerc Rehabil, 2018,14(5):724-730. |
[48] | Jung EM, Moffat JJ, Liu J, Dravid SM, Gurumurthy CB, Kim WY . Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat Neurosci, 2017,20(12):1694-1707. |
[49] | Takayanagi Y, Fujita E, Yu Z, Yamagata T, Momoi MY, Momoi T, Onaka T . Impairment of social and emotional behaviors in Cadm1-knockout mice. Biochem Biophys Res Commun, 2010,396(3):703-708. |
[50] | Williams DL, Goldstein G, Minshew NJ . The profile of memory function in children with autism. Neuropsychology, 2006,20(1):21-29. |
[51] | Shoji H, Miyakawa T . Age-related behavioral changes from young to old age in male mice of a C57BL/6J strain maintained under a genetic stability program. Neuropsychopharmacol Rep, 2019,39(2):100-118. |
[52] | Han RT, Kim YB, Park EH, Kim JY, Ryu C, Kim HY, Lee J, Pahk K, Shanyu C, Kim H, Back SK, Kim HJ, Kim YI, Na HS . Long-term isolation elicits depression and anxiety-related behaviors by reducing oxytocin- induced GABAergic transmission in central amygdala. Front Mol Neurosci, 2018,11:246. |
[53] | Zhao H, Jiang YH, Zhang YQ . Modeling autism in non-human primates: opportunities and challenges. Autism Res, 2018,11(5):686-694. |
[54] | Thomas AM, Schwartz MD, Saxe MD, Kilduff TS . Cntnap2 knockout rats and mice exhibit epileptiform activity and abnormal sleep-wake physiology. Sleep, 2017,40(1). |
[55] | Chen Q, Deister CA, Gao X, Guo BL, Lynn-Jones T, Chen NY, Wells MF, Liu RP, Goard MJ, Dimidschstein J, Feng SJ, Shi YW, Liao WP, Lu ZH, Fishell G, Moore CI, Feng GP . Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci, 2020,23(4):520-532. |
[56] | Burket JA, Young CM, Green TL, Benson AD, Deutsch SI . Characterization of gait and olfactory behaviors in the Balb/c mouse model of autism spectrum disorders. Brain Res Bull, 2016,122:29-34. |
[57] | Roemers P, Hulst Y, van Heijningen S, van Dijk G, van Heuvelen MJG, De Deyn PP, van der Zee EA. Inducing physical inactivity in mice: preventing climbing and reducing cage size negatively affect physical fitness and body composition. Front Behav Neurosci, 2019,13:221. |
[58] | Garg SK, Lioy DT, Cheval H, Mcgann JC, Bissonnette JM, Murtha MJ, Foust KD, Kaspar BK, Bird A, Mandel G . Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci. 2013,33(34):13612-13620. |
[59] | Orefice LL, Zimmerman AL, Chirila AM, Sleboda SJ, Head JP, Ginty DD . Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell, 2016,166(2):299-313. |
[60] | Yoo J, Bakes J, Bradley C, Collingridge GL, Kaang BK . Shank mutant mice as an animal model of autism. Philos Trans R Soc Lond B Biol Sci, 2013, 369(1633):20130143. |
[61] | Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, Ha S, Chung C, Jung ES, Cho YS, Park SG, Lee JS, Lee K, Kim D, Bae YC, Kaang BK, Lee MG, Kim E . Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature, 2012,486(7402):261-265. |
[62] | Wang X, Mccoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ, Berrios J, Colvin JS, Bousquet-Moore D, Lorenzo I, Wu G, Weinberg RJ, Ehlers MD, Philpot BD, Beaudet AL, Wetsel WC, Jiang YH . Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet, 2011,20(15):3093-3108. |
[63] | Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Escamilla CO, Weaver TP, Liu S, Filonova I, Powell CM . Novel shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function. Autism Res, 2017,10(1):42-65. |
[64] | Jaramillo TC, Xuan Z, Reimers JM, Escamilla CO, Liu S, Powell CM . Early restoration of Shank3 Expression in shank3 knock-out mice prevents core ASD-like behavioral phenotypes. eNeuro, 2020,7(3). |
[65] | Peca J, Feliciano C, Ting JT, Wang WT, Wells MF, Venkatraman TN, Lascola CD, Fu ZY, Feng GP . Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 2011,472(7344):437-442. |
[66] | Reynolds CD, Nolan SO, Jefferson T, Lugo JN . Sex-specific and genotype-specific differences in vocalization development in FMR1 knockout mice. Neuroreport, 2016,27(18):1331-1335. |
[67] | Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA . Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res, 2012,1439:7-14. |
[68] | Spencer CM, Alekseyenko O, Serysheva E, Yuva- Paylor LA, Paylor R . Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav, 2005,4(7):420-430. |
[69] | Delorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD . Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res, 2008,187(2):207-220. |
[70] | Celen C, Chuang JC, Luo X, Nijem N, Walker AK, Chen F, Zhang SY, Chung AS, Nguyen LH, Nassour I, Budhipramono A, Sun XX, Bok LA, Mcentagart M, Gevers EF, Birnbaum SG, Eisch AJ, Powell CM, Ge WP, Santen GW, Chahrour M, Zhu H . Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. eLife, 2017,6:e25730. |
[71] | Wei HG, Wang M, Lv N, Yang H, Zhao M, Huang B, Li RS . Increased repetitive self-grooming occurs in Pax2 mutant mice generated using CRISPR/Cas9. Behav Brain Res, 2020,393:112803. |
[72] | Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T . Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep, 2019,39(3):223-237. |
[73] | Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH . Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 2011,147(1):235-246. |
[74] | Hulbert SW, Wang XM, Gbadegesin SO, Xu Q, Xu X, Jiang YH . A novel Chd8 mutant mouse displays altered ultrasonic vocalizations and enhanced motor coordination. Autism Res, 2020,13(10):1685-1697. |
[75] | Jung H, Park H, Choi Y, Kang H, Lee E, Kweon H, Roh JD, Ellegood J, Choi W, Kang J, Rhim I, Choi SY, Bae M, Kim SG, Lee J, Chung C, Yoo T, Park H, Kim Y, Ha S, Um SM, Mo S, Kwon Y, Mah W, Bae YC, Kim H, Lerch JP, Paik SB, Kim E . Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci, 2018,21(9):1218-1228. |
[76] | Shih PY, Hsieh BY, Lin MH, Huang TN, Tsai CY, Pong WL, Lee SP, Hsueh YP . CTTNBP2 controls synaptic expression of zinc-related autism-associated proteins and regulates synapse formation and autism-like behaviors. Cell Rep, 2020,31(9):107700. |
[77] | Yoo T, Kim SG, Yang SH, Kim H, Kim E, Kim SY . A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol Autism, 2020,11(1):19. |
[78] | Gilbert J, O'Connor M, Templet S, Moghaddam M, Di Via IA, Sinclair A, Zhu LQ, Xu W, Man HY. Nexmif/ Kidlia knock-out mouse demonstrates autism-like behaviors, memory deficits, and impairments in synapse formation and function. J Neurosci, 2020,40(1):237-254. |
[79] | Armstrong EC, Caruso A, Servadio M, Andreae LC, Trezza V, Scattoni ML, Fernandes C . Assessing the developmental trajectory of mouse models of neurodevelopmental disorders: Social and communication deficits in mice with Neurexin 1alpha deletion. Genes Brain Behav, 2020,19(4):e12630. |
[80] | Etherton MR, Blaiss CA, Powell CM, Sudhof TC . Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci USA, 2009,106(42):17998-18003. |
[81] | Burrows EL, Laskaris L, Koyama L, Churilov L, Bornstein JC, Hill-Yardin EL, Hannan AJ . A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Mol Autism, 2015,6:62. |
[82] | Cao W, Lin S, Xia QQ, Du YL, Yang Q, Zhang MY, Lu YQ, Xu J, Duan SM, Xia J, Feng G, Xu J, Luo JH . Gamma oscillation dysfunction in mpfc leads to social deficits in neuroligin 3 R451C knockin mice. Neuron, 2018,97(6):1253-1260. |
[83] | El-Kordi A, Winkler D, Hammerschmidt K, Kästner A, Krueger D, Ronnenberg A, Ritter C, Jatho J, Radyushkin K, Bourgeron T, Fischer J, Brose N, Ehrenreich H . Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav Brain Res, 2013,251:41-49. |
[84] | Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C, Bolliger MF, Sudhof TC, Powell CM . Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci, 2010,30(6):2115-2129. |
[85] | Nakanishi M, Nomura J, Ji X, Tamada K, Arai T, Takahashi E, Bućan M, Takumi T . Functional significance of rare neuroligin 1 variants found in autism. PLoS Genet, 2017,13(8):e1006940. |
[86] | Clipperton-Allen AE, Page DT . Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Hum Mol Genet, 2014,23(13):3490-3505. |
[87] | Cupolillo D, Hoxha E, Faralli A, De Luca A, Rossi F, Tempia F, Carulli D . Autistic-Like Traits and Cerebellar Dysfunction in Purkinje Cell PTEN Knock-Out Mice. Neuropsychopharmacol, 2016,41(6):1457-1466. |
[88] | Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ . Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med, 2008,14(8):843-848. |
[89] | Tsai PT, Rudolph S, Guo C, Ellegood J, Gibson JM, Schaeffer SM, Mogavero J, Lerch JP, Regehr W, Sahin M . Sensitive Periods for cerebellar-mediated autistic- like behaviors. Cell Rep, 2018,25(2):357-367. |
[90] | Zheng F, Kasper LH, Bedford DC, Lerach S, Teubner BJ, Brindle PK . Mutation of the CH1 domain in the histone acetyltransferase crebbp results in autism-relevant behaviors in mice. PLoS One, 2016,11(1):e146366. |
[91] | Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, Wagner GC . En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res, 2006,1116(1):166-176. |
[92] | Silverman JL, Yang M, Lord C, Crawley JN . Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci, 2010,11(7):490-502. |
[93] | Bowers JM, Konopka G. ASD-relevant animal models of the foxp family of transcription factors. Autism Open Access, 2012, (Suppl.) 1(10):10082. |
[94] | Medvedeva VP, Rieger MA, Vieth B, Mombereau C, Ziegenhain C, Ghosh T, Cressant A, Enard W, Granon S, Dougherty JD, Groszer M . Altered social behavior in mice carrying a cortical Foxp2 deletion. Hum Mol Genet, 2019,28(5):701-717. |
[95] | Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T . Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell, 2009,137(7):1235-1246. |
[96] | Lacaria M, Spencer C, Gu W, Paylor R, Lupski JR . Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits. Hum Mol Genet, 2012,21(14):3083-3096. |
[97] | Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP, Lupski JR, Reymond A, Walz K . Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. Hum Mol Genet, 2008,17(16):2486-2495. |
[98] | Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, Suyama M, Takumi T, Miyakawa T, Nakayama KI . CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature, 2016,537(7622):675-679. |
[99] | Meyza KZ, Defensor EB, Jensen AL, Corley MJ, Pearson BL, Pobbe RL, Bolivar VJ, Blanchard DC, Blanchard RJ . The BTBR T+ tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res, 2013,251:25-34. |
[100] | Brodkin ES . BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res, 2007,176(1):53-65. |
[101] | Ryan BC, Young NB, Crawley JN, Bodfish JW, Moy SS . Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav Brain Res, 2010,208(1):178-188. |
[102] | Sun XP, Wang Q, Shi Z, Chen SG, Liu X . Review and prospect of experiment methodology on animal behavior. Chin J Comp Med, 2018,28(3):1-7. |
孙秀萍, 王琼, 石哲, 陈善广, 刘新民 . 动物行为实验方法学研究的回顾与展望. 中国比较医学杂志, 2018,28(3):1-7. | |
[103] | Jin JM . The application of ethology in modern life science research laboratory. Lab Anim Comp Med, 2008,28(1):1-3. |
金玫蕾 . 动物行为学在现代生命科学研究中的应用. 实验动物与比较医学, 2008,28(1):1-3. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: