遗传 ›› 2021, Vol. 43 ›› Issue (11): 1023-1037.doi: 10.16288/j.yczz.21-214
收稿日期:
2021-08-26
修回日期:
2021-10-28
出版日期:
2021-11-20
发布日期:
2021-10-28
通讯作者:
姜雨
E-mail:bppisc@163.com;yu.jiang@nwafu.edu.cn
作者简介:
边培培,在读博士研究生,专业方向:动物遗传。E-mail: 基金资助:
Peipei Bian(), Yu Zhang, Yu Jiang()
Received:
2021-08-26
Revised:
2021-10-28
Online:
2021-11-20
Published:
2021-10-28
Contact:
Jiang Yu
E-mail:bppisc@163.com;yu.jiang@nwafu.edu.cn
Supported by:
摘要:
随着三代测序组装的高质量参考基因组的陆续发布,以及大规模重测序和群体遗传学分析的广泛进行,研究人员发现来自单一个体的参考基因组远不能涵盖整个物种的所有遗传序列,大量缺失序列导致群体遗传变异图谱不完整,而构建来自多个个体的泛基因组能很好地解决这一缺陷,其研究内容包括负责基本生物学功能及该物种主要表型特征的核心基因组以及与物种的遗传多样性和个体独特性相关的可变基因组。根据核心和可变基因组所占比例的不同,泛基因组存在开放型和闭合型两种类型。本文主要综述了细菌、真菌和动植物的泛基因组学研究进展,讨论了其在各生物类群中的特征,其中哺乳动物泛基因组是相对闭合的,而目前已知的微生物、被子植物和部分低等动物的泛基因组倾向于开放,通过泛基因组的构建可以完善现有参考基因组并获取整个物种的完整变异信息,将有助于深入研究遗传多样性和表型变异产生的分子机制。
边培培, 张禹, 姜雨. 泛基因组:高质量参考基因组的新标准[J]. 遗传, 2021, 43(11): 1023-1037.
Peipei Bian, Yu Zhang, Yu Jiang. Pan-genome: setting a new standard for high-quality reference genomes[J]. Hereditas(Beijing), 2021, 43(11): 1023-1037.
表2
泛基因组代表性研究"
年份 | 物种 | 基因组大小 | 个体数目 | 构建策略 | 主要新进展 | 参考文献 |
---|---|---|---|---|---|---|
2005 | 无乳链球菌 (Streptococcus agalactiae) | ~2 Mb | 8 | 基于多个从头组装的基因组的比较 | 泛基因组概念的引入 | [ |
2007 | N/A | N/A | N/A | N/A | 综述文章,第一次在植物中应用泛基因组这个术语 | [ |
2010 | 人(Homo sapiens) | ~3.2 Gb | 3 | 基于多个从头组装的基因组的比较 | 估计一个完整的泛基因组可能包含19~ 40 Mb在当前参考基因组中不存在的新序列,鉴定了额外86个新基因 | [ |
2014 | 大豆(Glycine soya) | ~0.9 Gb | 7 | 基于多个从头组装的基因组的比较 | 第一个植物泛基因组文章,测序和重新组装了野生大豆个体的基因组,将注释基因聚类到基因家族,核心基因簇的比例为49% | [ |
玉米(Zea mays) | ~2.4 Gb | 503 | 基于多个从头组装的转录组的比较 | 获得了约8600个有代表性的在参考基因组中不存在的转录本,其中的16.4%在所有品系中表达,82.7%在部分品系中表达 | [ | |
2016 | 甘蓝(Brassica oleracea ) | ~650 Mb | 10 | reads映射到参考基因组;unmapping reads的组装;通过新组装的contigs更新旧序列来产生新的参考序列。(将从每个基因组获得的reads映射到不断增长的泛基因组) | 核心基因簇比例占泛基因组总数的81%,近20%的基因受到存在/缺失变异的影响 | [ |
2018 | 水稻(Oryza sativa) | ~400 Mb | 3010 | 对个体测序数据进行组装,通过从与参考基因组unaligned的contigs中移除冗余序列来构建具有代表性的非参考序列,结合参考基因组构建泛基因组 | 鉴定了超过10,000个新的全长蛋白编码基因和大量的存在-缺失变异,核心基因簇比例占泛基因组总数的54%~62% | [ |
2019 | 人(Homo sapiens) | ~3.2Gb | 910 | reads映射到参考基因组,组装unmapping的reads,保留新组装的长度大于1 kb的非参考序列的contigs用于构建泛基因组 | 利用非洲血统的人类群体基因组构建泛基因组,获取了参考基因组中296 Mb不存在的序列 | [ |
番茄(Solanum lycopersicum) | ~810Mb | 725 | 对个体测序数据进行组装,通过从与参考基因组unaligned的contigs中移除冗余序列来构建具有代表性的非参考序列,结合参考基因组构建泛基因组 | 鉴定出一个约 4 kb 与风味相关的基因TomLoxC的启动子的存在缺失变异,表明泛基因组研究可以帮助物种恢复驯化或者改良过程中丢失的理想性状 | [ | |
猪(Sus scrofa) | ~2.7 Gb | 12 | 基于从头组装的基因组之间的相互比较 | 第一个家养动物的线性泛基因组,获得了额外的72.5 Mb序列 | [ | |
山羊(Capra hircus) | ~2.9 Gb | 10 | 基于从头比较来自近缘物种的基因组 | 第一个跨物种比对的泛基因组,从参考基因组中寻找缺失序列的有效且可靠的策略,获得了38.3 Mb 序列 | [ | |
2020 | 大豆 (Glycine soja和 Glycine max) | ~1 Gb | 29 | 基于从头组装的基因组之间的相互比较,图结构泛基因组 | 鉴定了大的结构变异和基因融合事件,将结构变异与基因表达和农艺性状联系起来 | [ |
牛(Bos taurus) | ~2.6 Gb | 300 | 集成了线性参考基因组坐标和预先选择的变异(<50 bp),图结构泛基因组 | 第一个家养动物的图结构泛基因组,在人类以外的大基因组动物上对图结构泛基因组的首个尝试 | [ | |
贻贝 (Mytilus galloprovincialis) | ~1.28 Gb | 16 | 测序reads被映射到贻贝参考基因组上,收集未映射的reads从头组装。新组装的contigs被添加到参考基因组中,构建了一个贻贝泛基因组(将从每个基因组获得的reads映射到不断增长的泛基因组)。 | 开放型的动物泛基因组,高比例的可变基因组(45%),展示了动物泛基因组的潜能 | [ | |
2021 | 水稻(Oryza sativa和Oryza glaberrima) | ~400 Mb | 33 | 基于从头组装的基因组之间的相互比较,图结构泛基因组 | 共鉴定了171,072个SVs和25,549个gCNVs,可以用于全基因组关联研究 | [ |
牛(Bos taurus) | ~2.6 Gb | 6 | 基于从头组装的基因组之间的相互比较,图结构泛基因组 | 70 Mb的非参考基因组等位序列,提供了一个构建图结构泛基因组的框架,适合于多种物种 | [ |
[1] |
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Ros IMY, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou LW, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci USA, 2005, 102(39):13950-13955.
doi: 10.1073/pnas.0506758102 |
[2] |
Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet, 2020, 36(2):132-145.
doi: 10.1016/j.tig.2019.11.006 |
[3] |
Tian XM, Li R, Fu WW, Li Y, Wang XH, Li M, Du D, Tang QZ, Cai YD, Long YM, Zhao Y, Li MZ, Jiang Y. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Sci China Life Sci, 2019, 63(5):750-763.
doi: 10.1007/s11427-019-9551-7 |
[4] |
Gao L, Gonda I, Sun HE, Ma QY, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu YM, van der Knaap E, Huang SW, Klee HJ, Giovannoni JJ, Fei ZJ. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet, 2019, 51(6):1044-1051.
doi: 10.1038/s41588-019-0410-2 |
[5] |
Li RQ, Li YR, Zheng HC, Luo RB, Zhu HM, Li QB, Qian WB, Ren YY, Tian G, Li JX, Zhou GY, Zhu X, Wu HL, Qin JJ, Jin X, Li DF, Cao HZ, Hu XD, Blanche H, Cann H, Zhang XQ, Li SG, Bolund L, Kristiansen K, Yang HM, Wang J, Wang J. Building the sequence map of the human pan-genome. Nat Biotechnol, 2010, 28(1):57-63.
doi: 10.1038/nbt.1596 |
[6] |
Cao K, Peng Z, Zhao X, Li Y, Liu KZ, Arus P, Zhu GR, Deng SH, Fang WC, Chen CW, Wang XW, Wu JL, Fei ZJ, Wang LR. Pan-genome analyses of peach and its wild relatives provide insights into the genetics of disease resistance and species adaptation. BioRxiv, 2020, doi: 10.1101/2020.07.13.200204.
doi: 10.1101/2020.07.13.200204 |
[7] |
Schreiber M, Stein N, Mascher M. Genomic approaches for studying crop evolution. Genome Biol, 2018, 19(1):140.
doi: 10.1186/s13059-018-1528-8 pmid: 30241487 |
[8] |
Yue JX, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino MC, Fischer G, Durbin R, Liti G. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat Genet, 2017, 49(6):913-924.
doi: 10.1038/ng.3847 |
[9] |
Kaas RS, Friis C, Ussery DW, Aarestrup FM. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics, 2012, 13(1):577.
doi: 10.1186/1471-2164-13-577 |
[10] |
Wang WS, Mauleon R, Hu ZQ, Chebotarov D, Tai SS, Wu ZC, Li M, Zheng TQ, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu JL, Sun C, Fu BY, Zhang HL, Gao YM, Zhao XQ, Shen F, Cui X, Yu H, Li ZC, Chen ML, Detras J, Zhou YL, Zhang XY, Zhao Y, Kudrna D, Wang CC, Li R, Jia B, Lu JY, He XC, Dong ZT, Xu JB, Li YH, Wang M, Shi JX, Li J, Zhang DB, Lee S, Hu WS, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu YC, Yue Z, Naredo MEB, Talag J, Wang XQ, Li JJ, Fang XD, Yin Y, Glaszmann JC, Zhang JW, Li JY, Hamilton RS, Wing RA, Ruan J, Zhang GY, Wei CC, Alexandrov N, McNally KL, Li ZK, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703):43-49.
doi: 10.1038/s41586-018-0063-9 |
[11] |
Song JM, Guan ZL, Hu JL, Guo CC, Yang ZQ, Wang S, Liu DX, Wang B, Lu SP, Zhou R, Xie WZ, Cheng YF, Zhang YT, Liu K, Yang QY, Chen LL, Guo L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6(1):34-45.
doi: 10.1038/s41477-019-0577-7 |
[12] |
Zou YQ, Xue WB, Luo GW, Deng ZQ, Qin PP, Guo RJ, Sun HP, Xia Y, Liang SS, Dai Y, Wan DW, Jiang RR, Su LL, Feng Q, Jie ZY, Guo TK, Xia ZK, Liu C, Yu JH, Lin YX, Tang SM, Huo GC, Xu X, Hou Y, Liu X, Wang J, Yang HM, Kristiansen K, Li JH, Jia HJ, Xiao L. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol, 2019, 37(2):179-185.
doi: 10.1038/s41587-018-0008-8 |
[13] |
Naz K, Naz A, Ashraf ST, Rizwan M, Ahmad J, Baumbach J, Ali A. PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics, 2019, 20(1):123.
doi: 10.1186/s12859-019-2713-9 |
[14] |
Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu SQ, Stritt C, Roulin AC, Schackwitz W, Tyler L, Martin J, Lipzen A, Dochy N, Phillips J, Barry K, Geuten K, Budak H, Juenger TE, Amasino R, Caicedo AL, Goodstein D, Davidson P, Mur LAJ, Figueroa M, Freeling M, Catalan P, Vogel JP. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun, 2017, 8(1):2184.
doi: 10.1038/s41467-017-02292-8 pmid: 29259172 |
[15] |
Brito PH, Chevreux B, Serra CR, Schyns G, Henriques AO, Pereira-Leal JB. Genetic competence drives genome diversity in Bacillus subtilis. Genome Biol Evol, 2018, 10(1):108-124.
doi: 10.1093/gbe/evx270 |
[16] | Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R, Ismail N, Khalid MKNM, Amran F, Masuzawa T, Nakao R, Korba AA, Bourhy P, Veyrier FJ, Picardeau M. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl Trop Dis, 2019, 13(5):e0007270. |
[17] |
Lefébure T, Pavinski Bitar PD, Suzuki H, Stanhope MJ. Evolutionary dynamics of complete campylobacter pan-genomes and the bacterial species concept. Genome Biol Evol, 2010, 2:646-655.
doi: 10.1093/gbe/evq048 pmid: 20688752 |
[18] |
Rouli L, Merhej V, Fournier PE, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect, 2015, 7:72-85.
doi: 10.1016/j.nmni.2015.06.005 |
[19] | Crysnanto D, Leonard AS, Fang ZH, Pausch H. Novel functional sequences uncovered through a bovine multiassembly graph. Proc Natl Acad Sci USA, 2021, 118(20): e2101056118. |
[20] |
Sherman RM, Forman J, Antonescu V, Puiu D, Daya M, Rafaels N, Boorgula MP, Chavan S, Vergara C, Ortega VE, Levin AM, Eng C, Yazdanbakhsh M, Wilson JG, Marrugo J, Lange LA, Williams LK, Watson H, Ware LB, Olopade CO, Olopade O, Oliveira RR, Ober C, Nicolae DL, Meyers DA, Mayorga A, Knight-Madden J, Hartert T, Hansel NN, Foreman MG, Ford JG, Faruque MU, Dunston GM, Caraballo L, Burchard EG, Bleecker ER, Araujo MI, Herrera-Paz EF, Campbell M, Foster C, Taub MA, Beaty TH, Ruczinski I, Mathias RA, Barnes KC, Salzberg SL. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat Genet, 2019, 51(1):30-35.
doi: 10.1038/s41588-018-0273-y pmid: 30455414 |
[21] |
Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. Nat Plants, 2020, 6(8):914-920.
doi: 10.1038/s41477-020-0733-0 |
[22] |
Puigbò P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin EV. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol, 2014, 12(1):66.
doi: 10.1186/s12915-014-0066-4 |
[23] | Richard GF. Eukaryotic pangenomes. The Pangenome, Springer International Publishing, 2020, 253-291. |
[24] |
Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai KT, Doležel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. Plant J, 2017, 90(5):1007-1013.
doi: 10.1111/tpj.2017.90.issue-5 |
[25] |
Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet, 2020, 21(4):243-254.
doi: 10.1038/s41576-020-0210-7 pmid: 32034321 |
[26] |
Li H, Feng XW, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol, 2020, 21(1):265.
doi: 10.1186/s13059-020-02168-z |
[27] |
Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, Hickey G, Chang X, Seaman JD, Rounthwaite R, Ebler J, Rautiainen M, Garg S, Paten B, Marschall T, Sirén J, Garrison E. Pangenome graphs. Annu Rev Genom Hum G, 2020, 21(1):139-162.
doi: 10.1146/genom.2020.21.issue-1 |
[28] |
Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones W, Garg S, Markello C, Lin MF, Paten B, Durbin R. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol, 2018, 36(9):875-879.
doi: 10.1038/nbt.4227 pmid: 30125266 |
[29] |
Eggertsson HP, Kristmundsdottir S, Beyter D, Jonsson H, Skuladottir A, Hardarson MT, Gudbjartsson DF, Stefansson K, Halldorsson BV, Melsted P. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. Nat Commun, 2019, 10(1):5402.
doi: 10.1038/s41467-019-13341-9 pmid: 31776332 |
[30] |
Liu YC, Du HL, Li PC, Shen YT, Peng H, Liu SL, Zhou GA, Zhang HK, Liu Z, Shi M, Huang XH, Li Y, Zhang M, Wang Z, Zhu BG, Han B, Liang CZ, Tian ZX. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182(1): 162-176.e13.
doi: 10.1016/j.cell.2020.05.023 |
[31] |
Qin P, Lu HW, Du HL, Wang H, Chen WL, Chen Z, He Q, Ou SJ, Zhang HY, Li XZ, Li XX, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma BT, Wang YP, Qian YW, Fan SJ, Li WT, Wang J, He M, Yin JJ, Li T, Jiang N, Chen XW, Liang CZ, Li SG. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 2021, 184(13): 3542-3558.e16.
doi: 10.1016/j.cell.2021.04.046 |
[32] |
Crysnanto D, Pausch H. Bovine breed-specific augmented reference graphs facilitate accurate sequence read mapping and unbiased variant discovery. Genome Biol, 2020, 21(1):184.
doi: 10.1186/s13059-020-02105-0 pmid: 32718320 |
[33] |
Boutte CC, Crosson S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol, 2013, 21(4):174-180.
doi: 10.1016/j.tim.2013.01.002 pmid: 23419217 |
[34] |
Soucy SM, Huang JL, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet, 2015, 16(8):472-482.
doi: 10.1038/nrg3962 |
[35] |
Lefébure T, Stanhope MJ. Evolution of the core and pan- genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol, 2007, 8(5):R71.
doi: 10.1186/gb-2007-8-5-r71 |
[36] |
Cook H, Ussery DW. Sigma factors in a thousand E. coli genomes. Environ Microbiol, 2013, 15(12):3121-3129.
doi: 10.1111/emi.2013.15.issue-12 |
[37] |
O’Callaghan A, Bottacini F, O’Connell Motherway M, van Sinderen D. Pangenome analysis ofBifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics, 2015, 16(1):832.
doi: 10.1186/s12864-015-1968-4 |
[38] |
Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I, Dupont MJ, Charette SJ, Boyle B, Levesque RC. The pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol, 2019, 11(1):109-120.
doi: 10.1093/gbe/evy259 pmid: 30496396 |
[39] |
Dumas E, Christina Boritsch E, Vandenbogaert M, de la Vega RCR, Thiberge JM, Caro V, Gaillard JL, Heym B, Girard-Misguich F, Brosch R, Sapriel G. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol Evol, 2016, 8(2):387-402.
doi: 10.1093/gbe/evw001 |
[40] |
Anani H, Zgheib R, Hasni I, Raoult D, Fournier PE. Interest of bacterial pangenome analyses in clinical microbiology. Microb Pathog, 2020, 149:104275.
doi: 10.1016/j.micpath.2020.104275 |
[41] | Ding W, Baumdicker F, Neher RA. panX: pan-genome analysis and exploration. Nucleic Acids Res, 2018, 46(1):e5. |
[42] |
Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol, 2015, 23:148-154.
doi: 10.1016/j.mib.2014.11.016 pmid: 25483351 |
[43] | Fu J, Qin QW. Pan-genomics analysis of 30 Escherichia coli genomes. Hereditas(Beijing), 2012, 34(6):765-772 |
付静, 秦启伟. 30株大肠杆菌的泛基因组学特征分析. 遗传, 2012, 34(6):765-772. | |
[44] |
Golicz AA, Batley J, Edwards D. Towards plant pangenomics. Plant Biotechnol J, 2016, 14(4):1099-1105.
doi: 10.1111/pbi.12499 |
[45] |
Morgante M, De Paoli E, Radovic S. Transposable elements and the plant pan-genomes. Curr Opin Plant Biol, 2007, 10(2):149-155.
pmid: 17300983 |
[46] |
Li YH, Zhou GY, Ma JX, Jiang WK, Jin LG, Zhang ZH, Guo Y, Zhang JB, Sui Y, Zheng LT, Zhang SS, Zuo QY, Shi XH, Li YF, Zhang WK, Hu YY, Kong GY, Hong HL, Tan B, Song J, Liu ZX, Wang YS, Ruan H, Yeung CKL, Liu J, Wang HL, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li RQ, Qiu LJ. De novo assembly of soybean wild relatives for pan- genome analysis of diversity and agronomic traits. Nat Biotechnol, 2014, 32(10):1045-1052.
doi: 10.1038/nbt.2979 |
[47] |
Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang YJ, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, MacArthur DG, MacDonald JR, Onyiah I, Pang AWC, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME. Origins and functional impact of copy number variation in the human genome. Nature, 2010, 464(7289):704-712.
doi: 10.1038/nature08516 |
[48] |
Liu YC, Tian ZX. From one linear genome to a graph- based pan-genome: a new era for genomics. Sci China Life Sci, 2020, 63(12):1938-1941.
doi: 10.1007/s11427-020-1808-0 |
[49] |
Alonge M, Wang XA, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 2020, 182(1): 145-161.e23.
doi: 10.1016/j.cell.2020.05.021 |
[50] |
Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N, Kaeppler SM, Buell CR. Insights into the maize pan-genome and pan-transcriptome. Plant Cell, 2014, 26(1):121-135.
doi: 10.1105/tpc.113.119982 |
[51] |
Ou LJ, Li D, Lv JH, Chen WC, Zhang ZQ, Li XF, Yang BZ, Zhou SD, Yang S, Li WG, Gao HZ, Zeng Q, Yu HY, Ouyang B, Li F, Liu F, Zheng JY, Liu YH, Wang J, Wang BB, Dai XZ, Ma YQ, Zou XX. Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses. New Phytol, 2018, 220(2):360-363.
doi: 10.1111/nph.15413 |
[52] |
Walkowiak S, Gao LL, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri JN, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, Venturini L, Bevan M, Clavijo B, Koo DH, Ens J, Wiebe K, N’Diaye A, Fritz AK, Gutwin C, Fiebig A, Fosker C, Fu BX, Accinelli GG, Gardner KA, Fradgley N, Gutierrez-Gonzalez J, Halstead-Nussloch G, Hatakeyama M, Koh CS, Deek J, Costamagna AC, Fobert P, Heavens D, Kanamori H, Kawaura K, Kobayashi F, Krasileva K, Kuo T, McKenzie N, Murata K, Nabeka Y, Paape T, Padmarasu S, Percival-Alwyn L, Kagale S, Scholz U, Sese J, Juliana P, Singh R, Shimizu-Inatsugi R, Swarbreck D, Cockram J, Budak H, Tameshige T, Tanaka T, Tsuji H, Wright J, Wu JZ, Steuernagel B, Small I, Cloutier S, Keeble-Gagnère G, Muehlbauer G, Tibbets J, Nasuda S, Melonek J, Hucl PJ, Sharpe AG, Clark M, Legg E, Bharti A, Langridge P, Hall A, Uauy C, Mascher M, Krattinger SG, Handa H, Shimizu KK, Distelfeld A, Chalmers K, Keller B, Mayer KFX, Poland J, Stein N, McCartney CA, Spannagl M, Wicker T, Pozniak CJ. Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588(7837):277-283.
doi: 10.1038/s41586-020-2961-x |
[53] |
Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IAP, Paterson AH, Pires JC, Sharpe AG, Tang HB, Teakle GR, Town CD, Batley J, Edwards D. The pangenome of an agronomically important crop plantBrassica oleracea. Nat Commun, 2016, 7(1):13390.
doi: 10.1038/ncomms13390 |
[54] |
Zhao Q, Feng Q, Lu HY, Li Y, Wang AH, Tian QL, Zhan QL, Lu YQ, Zhang L, Huang T, Wang YC, Fan DL, Zhao Y, Wang ZQ, Zhou CC, Chen JY, Zhu CR, Li WJ, Weng QJ, Xu Q, Wang ZX, Wei XH, Han B, Huang XH. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet, 2018, 50(2):278-284.
doi: 10.1038/s41588-018-0041-z |
[55] |
Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, Barry K, Sreedasyam A, Shu SQ, Lovell JT, Feldman M, Wu JX, Yu YQ, Chen C, Johnson J, Sakakibara H, Kiba T, Sakurai T, Tavares R, Nusinow DA, Baxter I, Schmutz J, Brutnell TP, Kellogg EA. A genome resource for green milletSetaria viridis enables discovery of agronomically valuable loci. Nat Biotechnol, 2020, 38(10):1203-1210.
doi: 10.1038/s41587-020-0681-2 pmid: 33020633 |
[56] |
Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, Lee JS, Baute GJ, Owens GL, Grassa CJ, Ebert DP, Ostevik KL, Moyers BT, Yakimowski S, Masalia RR, Gao LX, Ćalić I, Bowers JE, Kane NC, Swanevelder DZH, Kubach T, Muños S, Langlade NB, Burke JM, Rieseberg LH. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat Plants, 2019, 5(1):54-62.
doi: 10.1038/s41477-018-0329-0 |
[57] |
Ma YL, Liu M, Stiller J, Liu CJ. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics, 2019, 20(1):12.
doi: 10.1186/s12864-018-5357-7 |
[58] |
Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang XQ, Angessa TT, Zhou GF, Tan C, Hill C, Wang PH, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu DD, Zhang J, Wang CC, Grimwood J, Schmutz J, Guo GG, Zhang GP, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li CD, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588(7837):284-289.
doi: 10.1038/s41586-020-2947-8 |
[59] |
Tao YF, Luo H, Xu JB, Cruickshank A, Zhao XR, Teng F, Hathorn A, Wu XY, Liu YM, Shatte T, Jordan D, Jing HC, Mace E. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat Plants, 2021, 7(6):766-773.
doi: 10.1038/s41477-021-00925-x |
[60] |
Wang B, Jiao YP, Chougule K, Olson A, Huang J, Llaca V, Fengler K, Wei XH, Wang LY, Wang XF, Regulski M, Drenkow J, Gingeras T, Hayes C, Armstrong JS, Huang YH, Xin ZG, Ware D. Pan-genome analysis in sorghum highlights the extent of genomic variation and sugarcane aphid resistance genes. BioRxiv, 2021, doi: 10.1101/2021.01.03.424980.
doi: 10.1101/2021.01.03.424980 |
[61] |
Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury JM, Istace B, Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G, Schacherer J. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556(7701):339-344.
doi: 10.1038/s41586-018-0030-5 |
[62] | McCarthy CGP, Fitzpatrick DA. Pan-genome analyses of model fungal species. Microb Genom, 2019, 5(2): e000243. |
[63] |
Badet T, Croll D. The rise and fall of genes: origins and functions of plant pathogen pangenomes. Curr Opin Plant Biol, 2020, 56:65-73.
doi: 10.1016/j.pbi.2020.04.009 |
[64] |
Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol, 2018, 16(1):5.
doi: 10.1186/s12915-017-0457-4 pmid: 29325559 |
[65] |
Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol, 2020, 18(1):12.
doi: 10.1186/s12915-020-0744-3 |
[66] |
Kehr B, Helgadottir A, Melsted P, Jonsson H, Helgason H, Jonasdottir A, Jonasdottir A, Sigurdsson A, Gylfason A, Halldorsson GH, Kristmundsdottir S, Thorgeirsson G, Olafsson I, Holm H, Thorsteinsdottir U, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Diversity in non-repetitive human sequences not found in the reference genome. Nat Genet, 2017, 49(4):588-593.
doi: 10.1038/ng.3801 |
[67] |
Duan ZQ, Qiao YY, Lu JY, Lu HM, Zhang WM, Yan FZ, Sun C, Hu ZQ, Zhang Z, Li GC, Chen HZ, Xiang Z, Zhu ZG, Zhao HY, Yu YY, Wei CC. HUPAN: a pan-genome analysis pipeline for human genomes. Genome Biol, 2019, 20(1):149.
doi: 10.1186/s13059-019-1751-y |
[68] |
Eisfeldt J, Mårtensson G, Ameur A, Nilsson D, Lindstrand A. Discovery of novel sequences in 1,000 swedish genomes. Mol Biol Evol, 2020, 37(1):18-30.
doi: 10.1093/molbev/msz176 pmid: 31560401 |
[69] |
Lunney JK. Advances in swine biomedical model genomics. Int J Biol Sci, 2007, 3(3):179-184.
pmid: 17384736 |
[70] |
Li R, Fu WW, Su R, Tian XM, Du D, Zhao Y, Zheng ZQ, Chen QM, Gao S, Cai YD, Wang XH, Li JQ, Jiang Y. Towards the complete goat pan-genome by recovering missing genomic segments from the reference genome. Front Genet, 2019, 10:1169.
doi: 10.3389/fgene.2019.01169 |
[71] |
Gerdol M, Moreira R, Cruz F, Gómez-Garrido J, Vlasova A, Rosani U, Venier P, Naranjo-Ortiz MA, Murgarella M, Greco S, Balseiro P, Corvelo A, Frias L, Gut M, Gabaldón T, Pallavicini A, Canchaya C, Novoa B, Alioto TS, Posada D, Figueras A. Massive gene presence-absence variation shapes an open pan-genome in the Mediterranean mussel. Genome Biol, 2020, 21(1):275.
doi: 10.1186/s13059-020-02180-3 pmid: 33168033 |
[72] |
Jia N, Wang JF, Shi WQ, Du LF, Sun Y, Zhan W, Jiang JF, Wang Q, Zhang B, Ji PF, Bell-Sakyi L, Cui XM, Yuan TT, Jiang BG, Yang WF, Lam TTY, Chang QC, Ding SJ, Wang XJ, Zhu JG, Ruan XD, Zhao L, Wei JT, Ye RZ, Que TC, Du CH, Zhou Y-H, Cheng JX, Dai PF, Guo WB, Han XH, Huang EJ, Li LF, Wei W, Gao YC, Liu JZ, Shao HZ, Wang X, Wang CC, Yang TC, Huo QB, Li W, Chen HY, Chen SE, Zhou LG, Ni XB, Tian JH, Sheng Y, Liu T, Pan YS, Xia LY, Li J, Tick Genome and Microbiome Consortium (TIGMIC), Zhao FQ, Cao WC. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell, 2020, 182(5): 1328-1340.e13.
doi: S0092-8674(20)30931-4 pmid: 32814014 |
[73] |
Sun C, Huang JX, Wang Y, Zhao XM, Su L, Thomas GWC, Zhao MY, Zhang XT, Jungreis I, Kellis M, Vicario S, Sharakhov IV, Bondarenko SM, Hasselmann M, Kim CN, Paten B, Penso-Dolfin L, Wang L, Chang YX, Gao Q, Ma L, Ma LN, Zhang Z, Zhang HB, Zhang HH, Ruzzante L, Robertson HM, Zhu YH, Liu YJ, Yang HP, Ding LL, Wang QG, Ma DN, Xu WL, Liang C, Itgen MW, Mee L, Cao G, Zhang Z, Sadd BM, Hahn MW, Schaack S, Barribeau SM, Williams PH, Waterhouse RM, Mueller RL. Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits. Mol Biol Evol, 2021, 38(2):486-501.
doi: 10.1093/molbev/msaa240 |
[74] |
Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet, 2018, 19(6):329-346.
doi: 10.1038/s41576-018-0003-4 pmid: 29599501 |
[75] | Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet, 2020, 21(10):597-614. |
[76] |
Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet, 2011, 12(5):363-376.
doi: 10.1038/nrg2958 pmid: 21358748 |
[1] | 付静,秦启伟. 30株大肠杆菌的泛基因组学特征分析[J]. 遗传, 2012, 34(6): 765-772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: