遗传 ›› 2022, Vol. 44 ›› Issue (6): 491-500.doi: 10.16288/j.yczz.22-004
王建梅(), 刘贺贺(), 马盛超, 席洋, 张荣萍, 徐倩, 李亮
收稿日期:
2022-01-04
修回日期:
2022-04-10
出版日期:
2022-06-20
发布日期:
2022-05-30
通讯作者:
刘贺贺
E-mail:1719487179@qq.com;liuee1985@sicau.edu.cn
作者简介:
王建梅,在读硕士研究生,专业方向:动物遗传育种与繁殖。E-mail: 基金资助:
Jianmei Wang(), Hehe Liu(), Shengchao Ma, Yang Xi, Rongping Zhang, Qian Xu, Liang Li
Received:
2022-01-04
Revised:
2022-04-10
Online:
2022-06-20
Published:
2022-05-30
Contact:
Liu Hehe
E-mail:1719487179@qq.com;liuee1985@sicau.edu.cn
Supported by:
摘要:
鸟类羽毛颜色普遍存在性别二态性,即雄性羽色相对于雌性更鲜艳,这种现象的产生可能与环境对性别的选择效应或性别间的种内竞争有关。鸟类羽毛颜色性别二态性的生理因素及遗传调控机制一直备受关注。了解两性二态性特征的形成机制,有助于深入了解两性的交配策略及种群的行为和进化过程。研究表明,ASIP、MC1R、TYRP1和BCO2等基因能调控鸟类羽色性别二态性的形成,主要通过控制黑色素或胡萝卜素产生或降解的速率和类型,或通过调控色素生物合成途径。本文综述了影响鸟类羽色性别二态性的生物学意义、直接原因(化学性颜色、物理性颜色)、性激素对鸟类羽色性别二态性的影响,以及部分关键基因调控鸟类羽色性别二态性形成的分子机制,以期为深入理解鸟类羽色性别二态性的形成机制研究提供参考。
王建梅, 刘贺贺, 马盛超, 席洋, 张荣萍, 徐倩, 李亮. 鸟类羽色性别二态性形成机制研究进展[J]. 遗传, 2022, 44(6): 491-500.
Jianmei Wang, Hehe Liu, Shengchao Ma, Yang Xi, Rongping Zhang, Qian Xu, Liang Li. Progress on the formation mechanism of sexual dimorphism plumage color in birds[J]. Hereditas(Beijing), 2022, 44(6): 491-500.
[1] |
Hernández-Palma A. Light matters: testing the "Light Environment Hypothesis" under intra- and interspecific contexts. Ecol Evol, 2016, 6(12):4018-4031.
doi: 10.1002/ece3.2188 pmid: 27516860 |
[2] | Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T. The biology of color. Science, 2017, 357(6350):470. |
[3] |
Leinonen H, Tanila H. Vision in laboratory rodents-tools to measure it and implications for behavioral research. Behav Brain Res, 2018, 352:172-182.
doi: S0166-4328(17)30870-7 pmid: 28760697 |
[4] |
Zuk M, Thornhill R, Ligon JD, Johnson K. Parasites and mate choice in red jungle fowl. Am Zool, 2015, 30(2):235-244.
doi: 10.1093/icb/30.2.235 |
[5] |
Jones AG, Ratterman NL. Mate choice and sexual selection: what have we learned since Darwin? Proc Natl Acad Sci USA, 2009, 106(Suppl 1):10001-10008.
doi: 10.1073/pnas.0901129106 |
[6] | Zann RA. The Zebra Finch: A Synthesis of Field and Laboratory Studies. New York: Oxford University Press, 1996. |
[7] |
Laporte M, Berrebi P, Claude J, Vinyoles D, Pou-Rovira Q, Raymond JC, Magnan P. The ecology of sexual dimorphism in size and shape of the freshwater blenny salaria fluviatilis. Curr Zool, 2018, 64(2):183-191.
doi: 10.1093/cz/zox043 pmid: 30402058 |
[8] |
Andersson M, Iwasa Y. Sexual selection. Trends Ecol Evol, 1996, 11(2):53-58.
pmid: 21237761 |
[9] | Payne RB. Sexual selection, lek and arena behavior, and sexual size dimorphism in birds. Ornithological Monographs, 1984(33):1-52. |
[10] |
Webster MS. Sexual dimorphism, mating system and body size in new world blackbirds (Icterinae). Evolution, 1992, 46(6):1621-1641.
doi: 10.1111/j.1558-5646.1992.tb01158.x |
[11] |
Winquist T, Lemon RE. Sexual selection and exaggerated male tail length in birds. Am Nat, 1994, 143(1):95-116.
doi: 10.1086/285597 |
[12] |
Zuk M, Thornhill R, Ligon JD, Johnson K, Austad S, Ligon SH, Thornhill NW, Costin C. The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. Am Nat, 1990, 136(4):459-473.
doi: 10.1086/285107 |
[13] | Prost S, Armstrong EE, Nylander J, Thomas GWC, Suh A, Petersen B, Dalen L, Benz BW, Blom MPK, Palkopoulou E, Ericson PGP, Irestedt M. Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise. Gigascience, 2019, 8(5): giz003. |
[14] |
Roulin A, Ducrest AL. Genetics of colouration in birds. Semin Cell Dev Biol, 2013, 24(6-7):594-608.
doi: 10.1016/j.semcdb.2013.05.005 |
[15] |
Hiyama G, Mizushima S, Matsuzaki M, Tobari Y, Choi JH, Ono T, Tsudzuki M, Makino S, Tamiya G, Tsukahara N, Sugita S, Sasanami T. Female Japanese quail visually differentiate testosterone-dependent male attractiveness for mating preferences. Sci Rep, 2018, 8(1):10012.
doi: 10.1038/s41598-018-28368-z pmid: 29968815 |
[16] |
Sramkoski LL, McLaughlin WN,Cooley AM,Yuan DC,John A,Wittkopp PJ. Genetic architecture of a body colour cline in drosophila americana. Mol Ecol, 2020, 29(15):2840-2854.
doi: 10.1111/mec.15531 pmid: 32603541 |
[17] |
Galván I, Solano F. Bird integumentary melanins: biosynthesis, forms, function and evolution. Int J Mol Sci, 2016, 17(4):520.
doi: 10.3390/ijms17040520 |
[18] |
Haase E, Ito S, Wakamatsu K. Influences of sex, castration, and androgens on the eumelanin and pheomelanin contents of different feathers in wild mallards. Pigment Cell Res, 1995, 8(3):164-170.
doi: 10.1111/j.1600-0749.1995.tb00658.x |
[19] |
Saino N, Romano M, Rubolini D, Teplitsky C, Ambrosini R, Caprioli M, Canova L, Wakamatsu K. Sexual dimorphism in melanin pigmentation, feather coloration and its heritability in the barn swallow (Hirundo rustica). PLoS One, 2013, 8(2):e58024.
doi: 10.1371/journal.pone.0058024 |
[20] | Blount JD, Mcgraw KJ. Signal functions of carotenoid colouration. Carotenoids, 2008, 4:213-236. |
[21] |
Bramley PM. The biochemistry of the carotenoids. Volume 1: Plants (Second edition). Biochem Soc Trans, 1981, 9(5):484-485.
doi: 10.1042/bst0090484 |
[22] |
Delhey K, Roberts ML, Peters A. The carotenoid- continuum: carotenoid-based plumage ranges from conspicuous to cryptic and back again. BMC Ecol, 2010, 10:13.
doi: 10.1186/1472-6785-10-13 |
[23] |
Walker LK, Ewen JG, Brekke P, Kilner RM. Sexually selected dichromatism in the hihi notiomystis cincta: multiple colours for multiple receivers. J Evol Biol, 2014, 27(8):1522-1535.
doi: 10.1111/jeb.12417 |
[24] |
Aguilera E, Amat JA. Carotenoids, immune response and the expression of sexual ornaments in male greenfinches (Carduelis chloris). Naturwissenschaften, 2007, 94(11):895-902.
doi: 10.1007/s00114-007-0268-5 |
[25] |
Albéric M, Dean MN, Gourrier A, Wagermaier W, Dunlop JWC, Staude A, Fratzl P, Reiche I. Relation between the macroscopic pattern of elephant ivory and its three- dimensional micro-tubular network. PLoS One, 2017, 12(1):e0166671.
doi: 10.1371/journal.pone.0166671 |
[26] |
Kohri M. Progress in polydopamine-based melanin mimetic materials for structural color generation. Sci Technol Adv Mater, 2021, 21(1), 833-848.
doi: 10.1080/14686996.2020.1852057 |
[27] | Durrer H, Villiger W. Schillerfarben der trogoniden. J Ornithol, 1966, 107(1):1-26. |
[28] |
Giraldo MA, Parra JL, Stavenga DG. Iridescent colouration of male anna's hummingbird (Calypte anna) caused by multilayered barbules. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2018, 204(12):965-975.
doi: 10.1007/s00359-018-1295-8 |
[29] |
Schmidt WJ, Ruska H. Über das schillernde federmelanin bei heliangelus und lophophorus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 1962, 57(1):1-36.
doi: 10.1007/BF00338926 |
[30] |
Rutschke E. Die submikroskopische struktur schillernder federn von entenvögeln. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 2004, 73:432-443.
doi: 10.1007/BF00329021 |
[31] |
Shawkey MD, Estes AM, Siefferman L, Hill GE. The anatomical basis of sexual dichromatism in non-iridescent ultraviolet-blue structural coloration of feathers. Biol J Linn Soc, 2005, 84(2):259-271.
doi: 10.1111/j.1095-8312.2005.00428.x |
[32] |
Eliason CM, Shawkey MD. A photonic heterostructure produces diverse iridescent colours in duck wing patches. J R Soc Interface, 2012, 9(74):2279-2289.
doi: 10.1098/rsif.2012.0118 pmid: 22491981 |
[33] | Fox DL. Animal Biochromes and Structural Colours: Physical, Chemical, Distribution & Physiological Features of Coloured Bodies in the Animal World. New York: University of California Press, 1976. |
[34] |
Khudiyev T, Dogan T, Bayindir M. Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L.) drakes. Sci Rep, 2014, 4:4718.
doi: 10.1038/srep04718 pmid: 24751587 |
[35] |
Ma SC, Liu HH, Wang JM, Wang L, Xi Y, Liu YS, Xu Q, Hu JW, Han CC, Bai LL, Li L, Wang JW. Transcriptome analysis reveals genes associated with sexual dichromatism of head feather color in mallard. Front Genet, 2021, 12:627974.
doi: 10.3389/fgene.2021.627974 |
[36] |
Lee E, Aoyama M, Sugita S. Microstructure of the feather in japanese jungle crows (Corvus macrorhynchos) with distinguishing gender differences. Anat Sci Int, 2009, 84(3):141-147.
doi: 10.1007/s12565-009-0022-5 |
[37] | Adkins-Regan E. Hormones and Animal Social Behavior. Princeton: Princeton University Press, 2013. |
[38] |
Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J, 1991, 5(14):2902-2909.
pmid: 1752358 |
[39] | Jimbow K, Alena F, Dixon W, Hara H. Regulatory factors of pheo-and eumelanogenesis in melanogenic compartments. Pigment Cell Res, 1992, Suppl 2: 36-42. |
[40] |
Kimball RT, Ligon JD. Evolution of avian plumage dichromatism from a proximate perspective. Am Nat, 1999, 154(2):182-193.
doi: 10.1086/303228 |
[41] |
Owens IP, Short RV. Hormonal basis of sexual dimorphism in birds: implications for new theories of sexual selection. Trends Ecol Evol, 1995, 10(1):44-47.
pmid: 21236951 |
[42] |
Lorin T, Salzburger W, Böhne A. Evolutionary fate of the androgen receptor-signaling pathway in ray-finned fishes with a special focus on cichlids. G3 (Bethesda), 2015, 5(11):2275-2283.
doi: 10.1534/g3.115.020685 |
[43] |
Siefferman L, Liu M, Navara KJ, Mendonça MT, Hill GE. Effect of prenatal and natal administration of testosterone on production of structurally based plumage coloration. Physiol Biochem Zool, 2013, 86(3):323-332.
doi: 10.1086/670383 pmid: 23629882 |
[44] |
Van Oordt GJ, Bruyns MFM. studien über die gonaden übersommernder vögel. IV. Die gonaden übersommernder austernfischer. (Haematopus ostralegus L.). Zeitschrift für Morphologie und Ökologie der Tiere, 1938, 34(2):161-172.
doi: 10.1007/BF00408756 |
[45] |
McGlothlin JW, Jawor JM, Greives TJ, Casto JM, Phillips JL, Ketterson ED. Hormones and honest signals: males with larger ornaments elevate testosterone more when challenged. J Evol Biol, 2008, 21(1):39-48.
doi: 10.1111/j.1420-9101.2007.01471.x |
[46] |
Lindsay WR, Webster MS, Varian CW, Schwabl H. Plumage colour acquisition and behaviour are associated with androgens in a phenotypically plastic tropical bird. Anim Behav, 2009, 77(6):1525-1532.
doi: 10.1016/j.anbehav.2009.02.027 |
[47] | Khalil S, Welklin JF, McGraw KJ,Boersma J,Schwabl H,Webster MS,Karubian J. Testosterone regulates CYP2J19- linked carotenoid signal expression in male red-backed fairywrens (Malurus melanocephalus). Proc Biol Sci, 2020, 287(1935):20201687. |
[48] |
Chen CF, Foley J, Tang PC, Li A, Jiang TX, Wu P, Widelitz RB, Chuong CM. Development, regeneration, and evolution of feathers. Annu Rev Anim Biosci, 2015, 3:169-195.
doi: 10.1146/annurev-animal-022513-114127 |
[49] | Boersma J, Jones JA, Enbody ED, Welklin JF, Ketaloya S, Karubian J, Schwabl H. Male white-shouldered fairywrens (Malurus alboscapulatus) elevate testosterone when courting females but not during territorial challenges. bioRxiv, 2021, 142:105158. |
[50] |
Lindsay WR, Webster MS, Schwabl H. Sexually selected male plumage color is testosterone dependent in a tropical passerine bird, the red-backed fairy-wren (Malurus melanocephalus). PLoS One, 2011, 6(10):e26067.
doi: 10.1371/journal.pone.0026067 |
[51] |
Lantz SM, Boersma J, Schwabl H, Karubian J. Early-moulting red-backed fairywren males acquire ornamented plumage in the absence of elevated androgens. Emu Austral Ornithol, 2017, 117(2):170-180.
doi: 10.1080/01584197.2017.1297206 |
[52] |
Gluckman TL, Mundy NI. Evolutionary pathways to convergence in plumage patterns. BMC Evol Biol, 2016, 16(1):172.
doi: 10.1186/s12862-016-0741-x |
[53] | Bókony V, Garamszegi LZ, Hirschenhauser K, Liker A. Testosterone and melanin-based black plumage coloration: a comparative study. Behav Ecol Sociobiology, 2008, 62(8):1229. |
[54] |
Boersma J, Enbody ED, Jones JA, Nason D, Lopez- Contreras E, Karubian J, Schwabl H. Testosterone induces plumage ornamentation followed by enhanced territoriality in a female songbird. Behav Ecol, 2020, 31(5):1233-1241.
doi: 10.1093/beheco/araa077 |
[55] |
Trigo S, Mota PG. A test of the effect of testosterone on a sexually selected carotenoid trait in a cardueline finch. Ecol Res, 2015, 30(1):25-31.
doi: 10.1007/s11284-014-1201-y |
[56] |
Mueller NS. An experimental study of sexual dichromatism in the duck Anas platyrhynchos. J Exp Zool, 1970, 173(3):263-268.
doi: 10.1002/jez.1401730304 |
[57] |
Keck WN. The control of the secondary sex characters in the English sparrow, passer domesticus (Linnaeus). J Exp Zool, 1934, 67(2):315-347.
doi: 10.1002/jez.1400670205 |
[58] |
Yu FF, Qu BL, Lin DD, Deng YW, Huang RL, Zhong ZM. Pax3 gene regulated melanin synthesis by tyrosinase pathway in pteria penguin. Int J Mol Sci, 2018, 19(12):3700.
doi: 10.3390/ijms19123700 |
[59] |
Liu XX, Du B, Zhang PQ, Zhang JZ, Zhu ZW, Liu B, Fan RW. miR-380-3p regulates melanogenesis by targeting SOX6 in melanocytes from alpacas (Vicugna pacos). BMC Genomics, 2019, 20(1):962.
doi: 10.1186/s12864-019-6343-4 |
[60] | Ran JS, You XY, Jin J, Zhou YG, Wang Y, Lan D, Ren P, Liu YP. The relationship between MC1R mutation and plumage color variation in pigeons. Biomed Res Int, 2016, 2016:3059756. |
[61] |
San-Jose LM, Ducrest AL, Ducret V, Béziers P, Simon C, Wakamatsu K, Roulin A. Effect of the MC1R gene on sexual dimorphism in melanin-based colorations. Mol Ecol, 2015, 24(11):2794-2808.
doi: 10.1111/mec.13193 pmid: 25857339 |
[62] | Zhang J, Liu Y, Liu AF. Progress of candidate genes ASIP and TYRP1 for plumage color in animal. China Poult, 2015, 37(1):55-58. |
张静, 刘毅, 刘安芳. 畜禽羽色候选基因ASIP和TYRP1的研究进展. 中国家禽, 2015, 37(1):55-58. | |
[63] |
Oribe E, Fukao A, Yoshihara C, Mendori M, Rosal KG, Takahashi S, Takeuchi S. Conserved distal promoter of the agouti signaling protein (ASIP) gene controls sexual dichromatism in chickens. Gen Comp Endocrinol, 2012, 177(2):231-237.
doi: 10.1016/j.ygcen.2012.04.016 |
[64] |
Melamed E, Arnold AP. Regional differences in dosage compensation on the chicken Z chromosome. Genome Biol, 2007, 8(9):R202.
doi: 10.1186/gb-2007-8-9-r202 pmid: 17900367 |
[65] |
Kuroiwa A. Sex-determining mechanism in avians. Adv Exp Med Biol, 2017, 1001:19-31.
doi: 10.1007/978-981-10-3975-1_2 pmid: 28980227 |
[66] |
Wang JM, Xi Y, Ma SC, Qi JJ, Li JP, Zhang RP, Han CC, Li L, Wang JW, Liu HH. Single-molecule long-read sequencing reveals the potential impact of posttranscriptional regulation on gene dosage effects on the avian Z chromosome. BMC Genomics, 2022, 23(1):122.
doi: 10.1186/s12864-022-08360-8 |
[67] |
Gazda MA, Araújo PM, Lopes RJ, Toomey MB, Andrade P, Afonso S, Marques C, Nunes L, Pereira P, Trigo S, Hill GE, Corbo JC, Carneiro M. A genetic mechanism for sexual dichromatism in birds. Science, 2020, 368(6496):1270-1274.
doi: 10.1126/science.aba0803 |
[68] | Gibson WB. The nature of animal colours. JAMA, 1961, 84(4):708-709. |
[69] |
McGraw KJ, Hill GE, Stradi R, Parker RS. The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the american goldfinch. Comp Biochem Physiol B Biochem Mol Biol, 2002, 131(2):261-269.
doi: 10.1016/S1096-4959(01)00500-0 |
[70] |
Yang Y, Wu LN, Chen JF, Wu X, Xia JH, Meng ZN, Liu XC, Lin HR. Whole-genome sequencing of leopard coral grouper (Plectropomus leopardus) and exploration of regulation mechanism of skin color and adaptive evolution. Zool Res, 2020, 41(3):328-340.
doi: 2095-8137(2020)03-0328-13 pmid: 32212431 |
[71] |
Price TD. Sensory drive, color, and color vision. Am Nat, 2017, 190(2):157-170.
doi: 10.1086/692535 |
[72] |
Osorio D, Vorobyev M. A review of the evolution of animal colour vision and visual communication signals. Vision Res, 2008, 48(20):2042-2051.
doi: 10.1016/j.visres.2008.06.018 pmid: 18627773 |
[73] |
Price-Waldman R, Stoddard MC. Avian coloration genetics: recent advances and emerging questions. J Hered, 2021, 112(5):395-416.
doi: 10.1093/jhered/esab015 |
[74] |
Lemaire BS. No evidence of spontaneous preference for slowly moving objects in visually naïve chicks. Sci Rep, 2020, 10(1):6277.
doi: 10.1038/s41598-020-63428-3 |
[1] | 杨秀荣,蒋和生,杨宁. 鸟类性别决定与性别分化机制[J]. 遗传, 2012, 34(4): 407-411. |
[2] | 郑江霞,杨宁. 鸟类性别决定候选基因在性反转鸡胚中的表达[J]. 遗传, 2007, 29(1): 81-81―86. |
[3] | 王存芳李宁吴常信. 基于F-2群体的藏鸡羽色、胫色性状的遗传分析[J]. 遗传, 2006, 28(7): 810-814. |
[4] | 马玉堃,牛黎明,国会艳. DNA在鸟类分子系统发育研究中的应用[J]. 遗传, 2006, 28(1): 97-104. |
[5] | 胡锐颖,李仲逵,丁小燕. 鸟类性别决定机制及性别鉴定的研究进展[J]. 遗传, 2005, 27(2): 297-301. |
[6] | 庞有志,赵淑娟. 鹌鹑羽色遗传的研究及应用[J]. 遗传, 2003, 25(4): 450-454. |
[7] | 段颖莉,于舒洋,李宁,. 鸡形目鸟类成熟胸肌中特异性表达的fTnT同工异构型及其生理学意义 [J]. 遗传, 2002, 24(6): 699-706. |
[8] | 庞有志,宋东亮,陈家友,徐恒玉,邓雯,任洪涛,王建春,毛森林,王树才,孙玉贵. 蛋用鹌鹑伴性羽色基因互作与连锁的关系[J]. 遗传, 2001, 23(4): 309-316. |
[9] | 姜玉霞,严雪松,温兴伟,李军. 雀形目八种鸟核型的比较研究A[J]. 遗传, 1997, 19(2): 23-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: