遗传 ›› 2023, Vol. 45 ›› Issue (11): 998-1006.doi: 10.16288/j.yczz.23-185
收稿日期:
2023-07-07
修回日期:
2023-10-17
出版日期:
2023-11-20
发布日期:
2023-11-01
通讯作者:
谢建平
E-mail:zhqiao67@icloud.com;georgex@swu.edu.cn
作者简介:
张其奥,硕士研究生,专业方向:微生物感染与免疫。E-mail: 基金资助:
Qi’ao Zhang1(), Zilu Wang1, Peibo Li2, Jianping Xie1,2()
Received:
2023-07-07
Revised:
2023-10-17
Published:
2023-11-20
Online:
2023-11-01
Contact:
Jianping Xie
E-mail:zhqiao67@icloud.com;georgex@swu.edu.cn
Supported by:
摘要:
干扰素诱导基因15 (interferon-stimulated gene 15,isg15)的表达受Ⅰ型干扰素诱导,该基因编码的蛋白ISG15可以分别通过E1、E2和E3酶的作用共价修饰靶蛋白,此过程被称为ISG化(ISGylation)。宿主蛋白的ISG化广泛参与天然免疫例如宿主的抗病毒过程。泛素特异性蛋白酶18 (ubiquitin-specific protease 18,USP18)作为一种去泛素化酶(deubiquitinase,DUB)可以去除靶蛋白偶联的ISG15,并通过抑制Ⅰ型干扰素信号通路来抑制宿主的免疫应答。ISG15介导的ISG化和USP18介导的去ISG化(deISGylation)建立的动态平衡对结核病的发生、发展和转归有重要影响。此外,同ISG15一样,USP18也广泛参与病毒感染和宿主细胞抗病毒反应,多种先天性免疫疾病和免疫信号通路都受到USP18的调节。本文综述了ISG15和USP18相关的研究进展,重点介绍了ISG15介导的ISGylation和USP18介导的去ISG化在结核病及其他重要疾病中的调控作用,以期为靶向宿主蛋白的结核病等重要疾病防治提供新的策略。
张其奥, 王子路, 李佩波, 谢建平. USP18介导的蛋白质去ISG化及其在结核病等传染病中的作用[J]. 遗传, 2023, 45(11): 998-1006.
Qi’ao Zhang, Zilu Wang, Peibo Li, Jianping Xie. USP18-mediated protein deISGylation and its role in tuberculosis and other infectious diseases[J]. Hereditas(Beijing), 2023, 45(11): 998-1006.
[1] |
Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem, 2009, 78: 363-397.
doi: 10.1146/annurev.biochem.78.082307.091526 pmid: 19489724 |
[2] |
Li ZB, Wang DK, Messing EM, Wu G. VHL protein- interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep, 2005, 6(4): 373-378.
doi: 10.1038/sj.embor.7400377 |
[3] |
Berthouze M, Venkataramanan V, Li Y, Shenoy SK. The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. EMBO J, 2009, 28(12): 1684-1696.
doi: 10.1038/emboj.2009.128 pmid: 19424180 |
[4] |
Yasunaga J, Lin FC, Lu XB, Jeang KT. Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling. J Virol, 2011, 85(13): 6212-6219.
doi: 10.1128/JVI.00079-11 pmid: 21525354 |
[5] |
Yuan J, Luo KT, Deng M, Li YH, Yin P, Gao BW, Fang Y, Wu PQ, Liu TZ, Lou ZK. HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res, 2014, 42(21): 13110-13121.
doi: 10.1093/nar/gku1034 pmid: 25355518 |
[6] |
Zhu M, Zhao HC, Liao J, Xu XZ. HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Res, 2014, 42(21): 13074-13081.
doi: 10.1093/nar/gku978 pmid: 25326330 |
[7] |
Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem, 2002, 277(12): 9976-9981.
doi: 10.1074/jbc.M109078200 pmid: 11788588 |
[8] |
Schwer H, Liu LQ, Zhou L, Little MT, Pan Z, Hetherington CJ, Zhang DE. Cloning and characterization of a novel human ubiquitin-specific protease, a homologue of murine UBP43 (Usp18). Genomics, 2000, 65(1): 44-52.
pmid: 10777664 |
[9] |
Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou LM, Little MT, Malakhova OA, Sipe JC, Orkin SH, Zhang DE. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev, 2002, 16(17): 2207-2212.
doi: 10.1101/gad.1010202 |
[10] |
Ketscher L, Hannß R, Morales DJ, Basters A, Guerra S, Goldmann T, Hausmann A, Prinz M, Naumann R, Pekosz A, Utermöhlen O, Lenschow DJ, Knobeloch KP. Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proc Natl Acad Sci USA, 2015, 112(5): 1577-1582.
doi: 10.1073/pnas.1412881112 pmid: 25605921 |
[11] |
Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, de la Torre JC, Zhang DE. Role of ISG 15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med, 2004, 10(12): 1374-1378.
doi: 10.1038/nm1133 |
[12] |
Potter JL, Narasimhan J, Mende-Mueller L, Haas AL. Precursor processing of pro-ISG15/UCRP, an interferon- beta-induced ubiquitin-like protein. J Biol Chem, 1999, 274(35): 25061-25068.
doi: 10.1074/jbc.274.35.25061 pmid: 10455185 |
[13] |
Li XL, Blackford JA, Judge CS, Liu M, Xiao W, Kalvakolanu DV, Hassel BA.RNase-L-dependent destabilization of interferon-induced mRNAs. A role for the 2-5 A system in attenuation of the interferon response. J Biol Chem, 2000, 275(12): 8880-8888.
doi: 10.1074/jbc.275.12.8880 pmid: 10722734 |
[14] |
Malakhova OA, Yan M, Malakhov MP, Yuan YZ, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev, 2003, 17(4): 455-460.
doi: 10.1101/gad.1056303 |
[15] |
Malakhova O, Malakhov M, Hetherington C, Zhang DE.Lipopolysaccharide activates the expression of ISG15-specific protease UBP 43 via interferon regulatory factor 3. J Biol Chem, 2002, 277(17): 14703-14711.
doi: 10.1074/jbc.M111527200 pmid: 11854279 |
[16] |
Tokarz S, Berset C, La Rue J, Friedman K, Nakayama KI, Nakayama K, Zhang DE, Lanker S. The ISG 15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase. J Biol Chem, 2004, 279(45): 46424-46430.
doi: 10.1074/jbc.M403189200 pmid: 15342634 |
[17] |
Li L, Lei QS, Zhang SJ, Kong LN, Qin B. Suppression of USP 18 potentiates the anti-HBV activity of interferon alpha in HepG2.2.15 cells via JAK/STAT signaling. Plos One, 2016, 11(5): e0156496.
doi: 10.1371/journal.pone.0156496 |
[18] |
Malakhova OA, Kim KI, Luo JK, Zou WG, Kumar KGS, Fuchs SY, Shuai K, Zhang DE. UBP 43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J, 2006, 25(11): 2358-2367.
pmid: 16710296 |
[19] |
Knobeloch KP, Utermöhlen O, Kisser A, Prinz M, Horak I. Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol Cell Biol, 2005, 25(24): 11030-11034.
doi: 10.1128/MCB.25.24.11030-11034.2005 |
[20] |
Osiak A, Utermöhlen O, Niendorf S, Horak I, Knobeloch KP. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol, 2005, 25(15): 6338-6345.
pmid: 16024773 |
[21] |
Kim KI, Yan M, Malakhova O, Luo JK, Shen MF, Zou WG, de la Torre JC, Zhang DE. Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Mol Cell Biol, 2006, 26(2): 472-479.
doi: 10.1128/MCB.26.2.472-479.2006 pmid: 16382139 |
[22] | Arimoto KI, Löchte S, Stoner SA, Burkart C, Zhang Y, Miyauchi S, Wilmes S, Fan JB, Heinisch JJ, Li Z, Yan M, Pellegrini S, Colland F, Piehler J, Zhang DE. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat Struct Mol Biol, 2017, 24(3): 279-289. |
[23] |
Liu NX, Pang XX, Zhang H, Ji P. The cGAS-STING pathway in bacterial infection and bacterial immunity. Front Immunol, 2021, 12: 814709.
doi: 10.3389/fimmu.2021.814709 |
[24] | Bomfim CCB, Fisher L, Amaral EP, Mittereder L, McCann K, Correa AAS, Namasivayam S, Swamydas M, Moayeri M, Weiss JM, Chari R, McVicar DW, Costa DL, D'Império Lima MR, Sher A. Mycobacterium tuberculosis induces Irg1 in murine macrophages by a pathway involving both TLR-2 and STING/IFNAR signaling and requiring bacterial phagocytosis. Front Cell Infect Microbiol, 2022, 12: 862582. |
[25] |
Huijser E, Bodewes ILA, Lourens MS, van Helden- Meeuwsen CG, van den Bosch TPP, Grashof DGB, van de Werken HJG, Lopes AP, van Roon JAG, van Daele PLA, Brkic Z, Dik WA, Versnel MA. Hyperresponsive cytosolic DNA-sensing pathway in monocytes from primary Sjögren's syndrome. Rheumatology (Oxford), 2022, 61(8): 3491-3496.
doi: 10.1093/rheumatology/keac016 pmid: 35022662 |
[26] |
Zhang M, Zhang MX, Zhang Q, Zhu GF, Yuan L, Zhang DE, Zhu QY, Yao J, Shu HB, Zhong B. USP 18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Res, 2016, 26(12): 1302-1319.
doi: 10.1038/cr.2016.125 pmid: 27801882 |
[27] |
Yang ZF, Xian HF, Hu JJ, Tian S, Qin YF, Wang RF, Cui J. USP 18 negatively regulates NF-kappaB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Sci Rep, 2015, 5: 12738.
doi: 10.1038/srep12738 |
[28] | Choi YB, Shembade N, Parvatiyar K, Balachandran S, Harhaj EW. TAX1BP1 restrains virus-induced apoptosis by facilitating itch-mediated degradation of the mitochondrial adaptor MAVS. Mol Cell Biol, 2017, 37(1): e00422-16. |
[29] |
White J, Suklabaidya S, Vo MT, Choi YB, Harhaj EW. Multifaceted roles of TAX1BP1 in autophagy. Autophagy, 2023, 19(1): 44-53.
doi: 10.1080/15548627.2022.2070331 |
[30] |
Hou FJ, Sun LJ, Zheng H, Skaug B, Jiang QX, Chen ZJJ. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell, 2011, 146(3): 448-461.
doi: 10.1016/j.cell.2011.06.041 pmid: 21782231 |
[31] |
LIU BY, GAO CJ. Regulation of MAVS activation through post-translational modifications. Curr Opin Immunol, 2018, 50: 75-81.
doi: S0952-7915(17)30037-7 pmid: 29245018 |
[32] |
Ling L, Goeddel DV. T6BP, a TRAF6-interacting protein involved in IL-1 signaling. Proc Natl Acad Sci USA, 2000, 97(17): 9567-9572.
doi: 10.1073/pnas.170279097 pmid: 10920205 |
[33] |
Hou JX, Han LL, Zhao Z, Liu HQ, Zhang L, Ma CH, Yi F, Liu BY, Zheng Y, Gao CJ. USP 18 positively regulates innate antiviral immunity by promoting K63-linked polyubiquitination of MAVS. Nat Commun, 2021, 12(1): 2970.
doi: 10.1038/s41467-021-23219-4 |
[34] |
Zhu GF, Badonyi M, Franklin L, Seabra L, Rice GI, Anne-Boland-Auge, Deleuze JF, El-Chehadeh S, Anheim M, de Saint-Martin A, Pellegrini S, Marsh JA, Crow YJ, El-Daher MT.Type I interferonopathy due to a homozygous loss-of-inhibitory function mutation in STAT2. J Clin Immunol, 2023, 43(4): 808-818.
doi: 10.1007/s10875-023-01445-3 pmid: 36753016 |
[35] |
Löchte S, Waichman S, Beutel O, You CJ, Piehler J. Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane. J Cell Biol, 2014, 207(3): 407-418.
doi: 10.1083/jcb.201406032 pmid: 25385185 |
[36] |
Tsft J, Bogunovic D. The goldilocks zone of type I IFNs: lessons from human genetics. J Immunol, 2018, 201(12): 3479-3485.
doi: 10.4049/jimmunol.1800764 pmid: 30530500 |
[37] |
Zhang XQ, Bogunovic D, Payelle-Brogard B, Francois- Newton V, Speer SD, Yuan C, Volpi S, Li Z, Sanal O, Mansouri D, Tezcan I, Rice GI, Chen CY, Mansouri N, Mahdaviani SA, Itan Y, Boisson B, Okada S, Zeng L, Wang X, Jiang H, Liu WQ, Han TT, Liu DL, Ma T, Wang B, Liu MG, Liu JY, Wang QK, Yalnizoglu D, Radoshevich L, Uzé G, Gros P, Rozenberg F, Zhang SY, Jouanguy E, Bustamante J, García-Sastre A, Abel L, Lebon P, Notarangelo LD, Crow YJ, Boisson-Dupuis S, Casanova JL, Pellegrini S. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature, 2015, 517(7532): 89-93.
doi: 10.1038/nature13801 |
[38] |
Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong XF, Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P, Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova JL. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science, 2012, 337(6102): 1684-1688.
doi: 10.1126/science.1224026 pmid: 22859821 |
[39] |
Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD, Li Z, van Unen L, Heijsman D, Goldmann T, Lequin MH, Kros JM, Stam W, Hermann M, Willemsen R, Brouwer RWW, Van IJcken WFJ, Martin-Fernandez M, de Coo I, Dudink J, de Vries FAT, Bertoli Avella A, Prinz M, Crow YJ, Verheijen FW, Pellegrini S, Bogunovic D, Mancini GMS. Human USP 18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med, 2016, 213(7): 1163-1174.
doi: 10.1084/jem.20151529 |
[40] |
Alsohime F, Martin-Fernandez M, Temsah MH, Alabdulhafid M, Le Voyer T, Alghamdi M, Qiu X, Alotaibi N, Alkahtani A, Buta S, Jouanguy E, Al-Eyadhy A, Gruber C, Hasan GM, Bashiri FA, Halwani R, Hassan HH, Al-Muhsen S, Alkhamis N, Alsum Z, Casanova JL, Bustamante J, Bogunovic D, Alangari AA. JAK inhibitor therapy in a child with inherited USP18 deficiency. N Engl J Med, 2020, 382(3): 256-265.
doi: 10.1056/NEJMoa1905633 |
[41] |
Muglia Amancio A, Mittereder L, Carletti A, Tosh KW, Green D, Antonelli LR, Gazzinelli RT, Sher A, Jankovic D. IFNs reset the differential capacity of human monocyte subsets to produce IL-12 in response to microbial stimulation. J Immunol, 2021, 206(7): 1642-1652.
doi: 10.4049/jimmunol.2001194 pmid: 33627376 |
[42] |
Liu XK, Li HX, Zhong B, Blonska M, Gorjestani S, Yan M, Tian Q, Zhang DE, Lin X, Dong C.USP 18 inhibits NF-kappa B and NFAT activation during Th 17 differentiation by deubiquitinating the TAK1-TAB 1 complex. J Exp Med, 2013, 210(8): 1575-1590.
doi: 10.1084/jem.20122327 |
[43] |
Martin-Fernandez M, Buta S, Le Voyer T, Li Z, Dynesen LT, Vuillier F, Franklin L, Ailal F, Muglia Amancio A, Malle L, Gruber C, Benhsaien I, Altman J, Taft J, Deswarte C, Roynard M, Nieto-Patlan A, Moriya K, Rosain J, Boddaert N, Bousfiha A, Crow YJ, Jankovic D, Sher A, Casanova JL, Pellegrini S, Bustamante J, Bogunovic D. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J Exp Med, 2022, 219(4): e20211273.
doi: 10.1084/jem.20211273 |
[44] |
Chen LM, Li SL, McGilvray I. The ISG15/USP18 ubiquitin-like pathway (ISGylation system) in hepatitis C virus infection and resistance to interferon therapy. Int J Biochem Cell Biol, 2011, 43(10): 1427-1431.
doi: 10.1016/j.biocel.2011.06.006 pmid: 21704181 |
[45] | Yan M, Luo JK, Ritchie KJ, Sakai I, Takeuchi K, Ren R, Zhang DE.Ubp 43 regulates BCR-ABL leukemogenesis via the type 1 interferon receptor signaling. Blood, 2007, 110(1): 305-312. |
[46] |
Pinto-Fernandez A, Salio M, Partridge T, Chen JZ, Vere G, Greenwood H, Olie CS, Damianou A, Scott HC, Pegg HJ, Chiarenza A, Díaz-Saez L, Smith P, Gonzalez-Lopez C, Patel B, Anderton E, Jones N, Hammonds TR, Huber K, Muschel R, Borrow P, Cerundolo V, Kessler BM. Deletion of the deISGylating enzyme USP18 enhances tumour cell antigenicity and radiosensitivity. Br J Cancer, 2021, 124(4): 817-830.
doi: 10.1038/s41416-020-01167-y |
[47] |
Yim HY, Park C, Lee YD, Arimoto K, Jeon R, Baek SH, Zhang DE, Kim HH, Kim KI. Elevated response to type I IFN enhances RANKL-mediated osteoclastogenesis in usp18-knockout mice. J Immunol, 2016, 196(9): 3887-3895.
doi: 10.4049/jimmunol.1501496 pmid: 27016605 |
[48] |
Wang YQ, Mei YX, Song YS, Bachus C, Sun CX, Sheshbaradaran H, Glogauer M. AP-002: a novel inhibitor of osteoclast differentiation and function without disruption of osteogenesis. Eur J Pharmacol, 2020, 889: 173613.
doi: 10.1016/j.ejphar.2020.173613 |
[49] |
Kar P, Millo T, Saha S, Mahtab S, Agarwal S, Goswami R. Osteogenic mechanisms of basal ganglia calcification and its ex vivo model in the hypoparathyroid milieu. Endocrinology, 2021, 162(4): bqab024.
doi: 10.1210/endocr/bqab024 |
[1] | 刘洋, 王邦兴, 刘志永, 韩轶, 谭耀驹, 李昕洁, 刘健雄, 谭守勇, 张天宇. 非一线抗结核药物耐药机制及耐药性诊断研究进展[J]. 遗传, 2016, 38(10): 928-939. |
[2] | 王程,徐旋,李璐璐,王涛,张旻,沈璐,唐北沙,刘静宇. 特发性基底节钙化致病的分子机制[J]. 遗传, 2015, 37(8): 731-740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: