遗传 ›› 2024, Vol. 46 ›› Issue (2): 126-139.doi: 10.16288/j.yczz.23-309
收稿日期:
2023-12-14
修回日期:
2024-01-14
出版日期:
2024-02-20
发布日期:
2024-01-15
通讯作者:
栾洋
E-mail:yluan@sjtu.edu.cn
基金资助:
Yang Luan1(), Xinyue You1, Jin Yang2
Received:
2023-12-14
Revised:
2024-01-14
Published:
2024-02-20
Online:
2024-01-15
Contact:
Yang Luan
E-mail:yluan@sjtu.edu.cn
Supported by:
摘要:
体细胞突变的累积与衰老、肿瘤及多种疾病的发生密切相关。在正常组织细胞中,基因组中自发突变和诱发突变的变异等位基因频率极低,对这类低频突变的检测一直面临挑战。第二代和第三代高通量测序(next-generation sequencing,NGS)技术的出现,可以实现任意物种全基因组上变异的直接检测,克服传统突变检测技术的诸多局限性。但是常规NGS由于测序错误率较高从而限制了其在低频突变检测上的应用,基于分子一致性测序策略进行错误矫正的高准确性NGS测序技术作为有效的低频突变检测工具,有望在环境诱变剂的评价与研究、细胞与基因治疗药物风险评估、人群健康风险监测和生命科学基础研究领域发挥重要作用。本文对比经典突变检测方法,对基于NGS的低频突变检测技术研究进展进行综述,并对应用前景进行展望,以期为该技术的进一步开发、研究和在相关领域的应用提供参考。
栾洋, 尤馨悦, 杨劲. 高通量测序技术在低频突变检测中的应用[J]. 遗传, 2024, 46(2): 126-139.
Yang Luan, Xinyue You, Jin Yang. Application of next-generation sequencing in the detection of low-abundance mutations[J]. Hereditas(Beijing), 2024, 46(2): 126-139.
[1] |
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt ANJ, Valdés-Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature, 2013, 500(7463): 415-421.
doi: 10.1038/nature12477 |
[2] |
Haradhvala NJ, Polak P, Stojanov P, Covington KR, Shinbrot E, Hess JM, Rheinbay E, Kim J, Maruvka YE, Braunstein LZ, Kamburov A, Hanawalt PC, Wheeler DA, Koren A, Lawrence MS, Getz G. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell, 2016, 164(3): 538-549.
doi: 10.1016/j.cell.2015.12.050 pmid: 26806129 |
[3] |
Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501(7467): 338-345.
doi: 10.1038/nature12625 |
[4] |
Beckman RA, Loeb LA. Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair (Amst), 2017, 56: 7-15.
doi: 10.1016/j.dnarep.2017.06.002 |
[5] |
Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Nat Rev Clin Oncol, 2016, 13(6): 335-347.
doi: 10.1038/nrclinonc.2015.175 pmid: 26483300 |
[6] |
Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science, 2015, 349(6255): 1483-1489.
doi: 10.1126/science.aab4082 pmid: 26404825 |
[7] |
Kucab JE, Zou XQ, Morganella S, Joel M, Nanda AS, Nagy E, Gomez C, Degasperi A, Harris R, Jackson SP, Arlt VM, Phillips DH, Nik-Zainal S. A compendium of mutational signatures of environmental agents. Cell, 2019, 177(4): 821-836.e16.
doi: S0092-8674(19)30263-6 pmid: 30982602 |
[8] |
Bielas JH, Loeb LA. Quantification of random genomic mutations. Nat Methods, 2005, 2 (4): 285-290.
pmid: 15782221 |
[9] |
Roach JC, Glusman G, Smit AFA, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, Shendure J, Drmanac R, Jorde LB, Hood L, Galas DJ. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 2010, 328(5978): 636-639.
doi: 10.1126/science.1186802 pmid: 20220176 |
[10] |
Milholland B, Dong X, Zhang L, Hao XX, Suh YS, Vijg J. Differences between germline and somatic mutation rates in humans and mice. Nat Commun, 2017, 8: 15183.
doi: 10.1038/ncomms15183 pmid: 28485371 |
[11] |
Besenbacher S, Liu SY, Izarzugaza JMG, Grove J, Belling K, Bork-Jensen J, Huang SJ, Als TD, Li ST, Yadav R, Rubio-García A, Lescai F, Demontis D, Rao JH, Ye WJ, Mailund T, Friborg RM, Pedersen CNS, Xu RQ, Sun JH, Liu H, Wang O, Cheng XF, Flores D, Rydza E, Rapacki K, Damm Sørensen J, Chmura P, Westergaard D, Dworzynski P, Sørensen TI, Lund O, Hansen T, Xu X, Li N, Bolund L, Pedersen O, Eiberg H, Krogh A, Børglum AD, Brunak S, Kristiansen K, Schierup MH, Wang J, Gupta R, Villesen P, Rasmussen S. Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nat Commun, 2015, 6: 5969.
doi: 10.1038/ncomms6969 pmid: 25597990 |
[12] |
Salk JJ, Kennedy SR. Next-generation genotoxicology: using modern sequencing technologies to assess somatic mutagenesis and cancer risk. Environ Mol Mutagen, 2020, 61(1): 135-151.
doi: 10.1002/em.22342 pmid: 31595553 |
[13] | White PA, Luijten M, Mishima M, Cox JA, Hanna JN, Maertens RM, Zwart EP. In vitro mammalian cell mutation assays based on transgenic reporters: a report of the international workshop on genotoxicity testing (IWGT). Mutat Res-Gen Tox En, 2019, 847: 403039. |
[14] | Kirkland D, Uno Y, Luijten M, Beevers C, van Benthem J, Burlinson B, Dertinger S, Douglas GR, Hamada S, Horibata K, Lovell DP, Manjanatha M, Martus HJ, Mei N, Morita T, Ohyama W, Williams A. In vivo genotoxicity testing strategies: report from the 7th international workshop on genotoxicity testing (IWGT). Mutat Res-Gen Tox En, 2019, 847: 403035. |
[15] | Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF Jr, White PA, Witt KL, Tanir JY. The in vivo Pig-a assay:a report of the international workshop on genotoxicity testing (IWGT) workgroup. Mutat Res-Gen Tox En, 2015, 783: 23-35. |
[16] | Nohmi T. Past, present and future directions of gpt delta rodent gene mutation assays. Food Saf (Tokyo), 2016, 4(1): 1-13. |
[17] |
Nohmi T, Masumura K, Toyoda-Hokaiwado N. Transgenic rat models for mutagenesis and carcinogenesis. Genes Environ, 2017, 39: 11.
doi: 10.1186/s41021-016-0072-6 |
[18] |
Ames BN, Lee FD, Durston WE. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA, 1973, 70(3): 782-786.
pmid: 4577135 |
[19] | OECD/OCDE. Test no. 470: mammalian erythrocyte Pig-a gene mutation assay, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, 2022. |
[20] | OECD/OCDE. Test no. 471: bacterial reverse mutation test, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, 2020. |
[21] | OECD/OCDE. Test no. 488: transgenic rodent somatic and germ cell gene mutation assays, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, 2020. |
[22] | OECD/OCDE. Test no. 490: in vitro mammalian cell gene mutation tests using the thymidine kinase gene, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, 2016. |
[23] |
Nohmi T, Masumura K. Gpt delta transgenic mouse: a novel approach for molecular dissection of deletion mutations in vivo. Adv Biophys, 2004, 38: 97-121.
doi: 10.1016/S0065-227X(04)80106-0 |
[24] | Dertinger SD, Bhalli JA, Roberts DJ, Stankowski LF Jr, Gollapudi BB, Lovell DP, Recio L, Kimoto T, Miura D, Heflich RH. Recommendations for conducting the rodent erythrocyte Pig-a assay: a report from the HESI GTTC Pig-a workgroup. Environ Mol Mutagen, 2021, 62(3): 227-237. |
[25] |
Parsons BL, Heflich RH. Genotypic selection methods for the direct analysis of point mutations. Mutat Res, 1997, 387(2): 97-121.
doi: 10.1016/S1383-5742(97)00026-4 |
[26] |
Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault SF. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn, 2018, 18(1): 7-17.
doi: 10.1080/14737159.2018.1400384 pmid: 29115895 |
[27] |
Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP Dube S, Rose KA, Montesclaros L, Wang SL, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem, 2011, 83(22): 8604-8610.
doi: 10.1021/ac202028g pmid: 22035192 |
[28] |
Chen LX, Liu PF, Evans TC Jr, Ettwiller LM. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science, 2017, 355(6326): 752-756.
doi: 10.1126/science.aai8690 pmid: 28209900 |
[29] |
Costello M, Pugh TJ, Fennell TJ, Stewart C, Lichtenstein L, Meldrim JC, Fostel JL, Friedrich DC, Perrin D, Dionne D, Kim S, Gabriel SB, Lander ES, Fisher S, Getz G. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res, 2013, 41(6): e67.
doi: 10.1093/nar/gks1443 |
[30] |
Do HD, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem, 2015, 61(1): 64-71.
doi: 10.1373/clinchem.2014.223040 pmid: 25421801 |
[31] |
Peng Q, Xu C, Kim D, Lewis M, DiCarlo J, Wang YX. Targeted single primer enrichment sequencing with single end duplex-UMI. Sci Rep, 2019, 9(1): 4810.
doi: 10.1038/s41598-019-41215-z pmid: 30886209 |
[32] | The Somatic Mutation Working Group of the SEQC-II Consortium. Achieving reproducibility and accuracy in cancer mutation detection with whole-genome and whole-exome sequencing. bioRxiv, 2019, 626440. |
[33] |
Maslov AY, Quispe-Tintaya W, Gorbacheva T, White RR, Vijg J. High-throughput sequencing in mutation detection: a new generation of genotoxicity tests?. Mutat Res, 2015, 776: 136-143.
doi: 10.1016/j.mrfmmm.2015.03.014 |
[34] |
Valentine CC 3rd, Young RR,Fielden MR,Kulkarni R,Williams LN,Li T,Minocherhomji S,Salk JJ. Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing. Proc Natl Acad Sci USA, 2020, 117(52): 33414-33425.
doi: 10.1073/pnas.2013724117 pmid: 33318186 |
[35] | Fox EJ, Reid-Bayliss KS, Emond MJ, Loeb LA. Accuracy of next generation sequencing platforms. Next Gener Seq Appl, 2014, 1: 1000106. |
[36] |
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26(10): 1135-1145.
doi: 10.1038/nbt1486 pmid: 18846087 |
[37] |
Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, Vijg J. Accurate identification of single- nucleotide variants in whole-genome-amplified single cells. Nat Methods, 2017, 14(5): 491-493.
doi: 10.1038/nmeth.4227 |
[38] |
Zong CH, Lu SJ, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 2012, 338(6114): 1622-1626.
doi: 10.1126/science.1229164 pmid: 23258894 |
[39] | Gonzalez-Pena V, Natarajan S, Xia YT, Klein D, Carter R, Pang YK, Shaner B, Annu K, Putnam D, Chen WA, Connelly J, Pruett-Miller S, Chen X, Easton J, Gawad C. Accurate genomic variant detection in single cells with primary template-directed amplification. Proc Natl Acad Sci UAS, 2021, 118(24): e2024176118. |
[40] |
Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet, 2016, 17 (3): 175-188.
doi: 10.1038/nrg.2015.16 pmid: 26806412 |
[41] |
Revollo JR, Miranda JA, Dobrovolsky VN. PacBio sequencing detects genome-wide ultra-low-frequency substitution mutations resulting from exposure to chemical mutagens. Environ Mol Mutagen, 2021, 62(8): 438-445.
doi: 10.1002/em.22462 pmid: 34424574 |
[42] |
Bai X, Li YX, Zeng XM, Zhao Q, Zhang ZW. Single-cell sequencing technology in tumor research. Clin Chim Acta, 2021, 518: 101-109.
doi: 10.1016/j.cca.2021.03.013 |
[43] | Zhang L, Lee M, Maslov AY, Montagna C, Vijg J, Dong X. Analyzing somatic mutations by single-cell whole-genome sequencing. Nat Protoc, 2023. |
[44] |
He J, Meng M, Zhou XC, Gao R, Wang H. Isolation of single cells from human hepatoblastoma tissues for whole- exome sequencing. STAR Protoc, 2023, 4(1): 102052.
doi: 10.1016/j.xpro.2023.102052 |
[45] |
Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet, 2018, 19(5): 269-285.
doi: 10.1038/nrg.2017.117 pmid: 29576615 |
[46] | Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, Sawyer SL. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Natl Acad Sci USA, 2013, 110(49): 19872-19877. |
[47] | Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci UAS, 2011, 108(23): 9530-9535. |
[48] |
Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci USA, 2012, 109(36): 14508-14513.
doi: 10.1073/pnas.1208715109 pmid: 22853953 |
[49] |
Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, Prindle MJ, Kuong KJ, Shen JC, Risques RA, Loeb LA. Detecting ultralow-frequency mutations by duplex sequencing. Nat Protoc, 2014, 9(11): 2586-2606.
doi: 10.1038/nprot.2014.170 pmid: 25299156 |
[50] | Chawanthayatham S, Valentine CC 3rd, Fedeles BI, Fox EJ, Loeb LA, Levine SS, Slocum SL, Wogan GN, Croy RG, Essigmann JM. Mutational spectra of aflatoxin B1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma. Proc Natl Acad Sci USA, 2017, 114(15): E3101-E3109. |
[51] |
LeBlanc DPM, Meier M, Lo FY, Schmidt E,Valentine C 3rd, Williams A, Salk JJ, Yauk CL, Marchetti F. Duplex sequencing identifies genomic features that determine susceptibility to benzo(a)pyrene-induced in vivo mutations. BMC Genomics, 2022, 23(1): 542.
doi: 10.1186/s12864-022-08752-w |
[52] | Hoang ML, Kinde I, Tomasetti C, McMahon KW, Rosenquist TA, Grollman AP, Kinzler KW, Vogelstein B, Papadopoulos N. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc Natl Acad Sci UAS, 2016, 113(35): 9846-9851. |
[53] |
Matsumura S, Sato H, Otsubo Y, Tasaki J, Ikeda N, Morita O. Genome-wide somatic mutation analysis via Hawk- SeqTM reveals mutation profiles associated with chemical mutagens. Arch Toxicol, 2019, 93(9): 2689-2701.
doi: 10.1007/s00204-019-02541-3 pmid: 31451845 |
[54] |
You XY, Thiruppathi S, Liu WY, Cao YY, Naito M, Furihata C, Honma M, Luan Y, Suzuki T. Detection of genome-wide low-frequency mutations with paired-end and complementary consensus sequencing (PECC-Seq) revealed end-repair-derived artifacts as residual errors. Arch Toxicol, 2020, 94(10): 3475-3485.
doi: 10.1007/s00204-020-02832-0 pmid: 32737516 |
[55] |
You XY, Cao YY, Suzuki T, Shao J, Zhu BZ, Masumura K, Xi J, Liu WY, Zhang XY, Luan Y. Genome-wide direct quantification of in vivo mutagenesis using high-accuracy paired-end and complementary consensus sequencing. Nucleic Acids Res, 2023, 51(21): e109.
doi: 10.1093/nar/gkad909 |
[56] |
Otsubo Y, Matsumura S, Ikeda N, Yamane M. Single-strand specific nuclease enhances accuracy of error-corrected sequencing and improves rare mutation-detection sensitivity. Arch Toxicol. 2022, 96(1): 377-386.
doi: 10.1007/s00204-021-03185-y |
[57] |
Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV, Ellis P, Russell AJC, Alcantara RE, Baez-Ortega A, Wang YC, Kwa EJ, Lee-Six H, Cagan A, Coorens THH, Chapman MS, Olafsson S, Leonard S, Jones D, Machado HE, Davies M, Øbro NF, Mahubani KT, Allinson K, Gerstung M, Saeb-Parsy K, Kent DG, Laurenti E, Stratton MR, Rahbari R, Campbell PJ, Osborne RJ, Martincorena I. Somatic mutation landscapes at single-molecule resolution. Nature, 2021, 593(7859): 405-410.
doi: 10.1038/s41586-021-03477-4 |
[58] |
Bae JH, Liu RL, Roberts E, Nguyen E, Tabrizi S, Rhoades J, Blewett T, Xiong K, Gydush G, Shea D, An ZY, Patel S, Cheng J, Sridhar S, Liu MH, Lassen E, Skytte AB, Grońska-Pęski M, Shoag JE, Evrony GD, Parsons HA, Mayer EL, Makrigiorgos GM, Golub TR, Adalsteinsson VA. Single duplex DNA sequencing with CODEC detects mutations with high sensitivity. Nat Genet, 2023, 55(5): 871-879.
doi: 10.1038/s41588-023-01376-0 pmid: 37106072 |
[59] |
Maslov AY, Makhortov S, Sun SX, Heid J, Dong X, Lee M, Vijg J. Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing. Sci Adv, 2022, 8(14): eabm3259.
doi: 10.1126/sciadv.abm3259 |
[60] |
Lynch AM, Zanoni TB, Salk JJ, Martincorena I, Young RR, Kucab J, Valentine CC, Yauk C, Escobar PA, Witt KL, Frötschl R, Reed SH, Ashford A. Next generation sequencing workshop at the royal society of medicine (London, May 2022): how genomics is on the path to modernizing genetic toxicology. Mutagenesis, 2023, 38(4): 192-200.
doi: 10.1093/mutage/gead012 pmid: 37300447 |
[61] |
Marchetti F, Cardoso R, Chen CL, Douglas GR, Elloway J, Escobar PA, Harper T, Heflich RH, Kidd D, Lynch AM, Myers MB, Parsons BL, Salk JJ, Settivari RS, Smith-Roe SL, Witt KL, Yauk C, Young RR, Zhang SF, Minocherhomji S. Error-corrected next-generation sequencing to advance nonclinical genotoxicity and carcinogenicity testing. Nat Rev Drug Discov, 2023, 22(3): 165-166.
doi: 10.1038/d41573-023-00014-y pmid: 36646809 |
[62] |
Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet, 2014, 15(9): 585-598.
doi: 10.1038/nrg3729 pmid: 24981601 |
[63] |
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V, PCAWG Mutational Signatures Working Group, Getz G, Rozen SG, Stratton MR, PCAWG Consortium. The repertoire of mutational signatures in human cancer. Nature, 2020, 578(7793): 94-101.
doi: 10.1038/s41586-020-1943-3 |
[64] |
Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, Totoki Y, Fujimoto A, Nakagawa H, Shibata T, Campbell PJ, Vineis P, Phillips DH, Stratton MR. Mutational signatures associated with tobacco smoking in human cancer. Science, 2016, 354(6312): 618-622.
pmid: 27811275 |
[65] |
Nik-Zainal S, Kucab JE, Morganella S, Glodzik D, Alexandrov LB, Arlt VM, Weninger A, Hollstein M, Stratton MR, Phillips DH. The genome as a record of environmental exposure. Mutagenesis, 2015, 30(6): 763- 770.
doi: 10.1093/mutage/gev073 pmid: 26443852 |
[66] |
Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat Rev Cancer, 2020, 20(10): 555-572.
doi: 10.1038/s41568-020-0290-x pmid: 32778778 |
[67] |
He YD. Genomic approach to biomarker identification and its recent applications. Cancer Biomark, 2006, 2(3-4): 103-133.
pmid: 17192065 |
[68] |
Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood, 2012, 120(14): 2826-2835.
doi: 10.1182/blood-2012-06-435669 pmid: 22875911 |
[69] |
Gale D, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, Calaway J, Blais S, Jones G, Clark J, Dimitrov P, Pugh M, Woodhouse S, Epstein M, Fernandez-Gonzalez A, Whale AS, Huggett JF, Foy CA, Jones GM, Raveh- Amit H, Schmitt K, Devonshire A, Green E, Forshew T, Plagnol V, Rosenfeld N. Development of a highly sensitive liquid biopsy platform to detect clinically- relevant cancer mutations at low allele fractions in cell-free DNA. PLoS One, 2018, 13(3): e0194630.
doi: 10.1371/journal.pone.0194630 |
[70] |
Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW Jr, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med, 2014, 20(5): 548-554.
doi: 10.1038/nm.3519 pmid: 24705333 |
[71] |
Cohen JD, Douville C, Dudley JC, Mog BJ, Popoli M, Ptak J, Dobbyn L, Silliman N, Schaefer J, Tie J, Gibbs P, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B. Detection of low-frequency DNA variants by targeted sequencing of the watson and crick strands. Nat Biotechnol, 2021, 39(10): 1220-1227.
doi: 10.1038/s41587-021-00900-z pmid: 33941929 |
[72] |
Patkar N, Kakirde C, Shaikh AF, Salve R, Bhanshe P, Chatterjee G, Rajpal S, Joshi S, Chaudhary S, Kodgule R, Ghoghale S, Deshpande N, Shetty D, Khizer SH, Jain H, Bagal B, Menon H, Khattry N, Sengar M, Tembhare P, Subramanian P, Gujral S. Clinical impact of panel-based error-corrected next generation sequencing versus flow cytometry to detect measurable residual disease (MRD) in acute myeloid leukemia (AML). Leukemia, 2021, 35(5): 1392-1404.
doi: 10.1038/s41375-021-01131-6 pmid: 33558666 |
[73] | Hourigan CS, Dillon LW, Gui GG, Logan BR, Fei MW, Ghannam J, Li YS, Licon A, Alyea EP, Bashey A, Deeg HJ, Devine SM, Fernandez HF, Giralt S, Hamadani M, Howard A, Maziarz RT, Porter DL, Scott BL, Warlick ED, Pasquini MC, Horwitz ME. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol, 2020, 38(12): 1273-1283. |
[74] |
Balagopal V, Hantel A, Kadri S, Steinhardt G, Zhen CJ, Kang WJ, Wanjari P, Ritterhouse LL, Stock W, Segal JP. Measurable residual disease monitoring for patients with acute myeloid leukemia following hematopoietic cell transplantation using error corrected hybrid capture next generation sequencing. PLoS One, 2019, 14(10): e0224097.
doi: 10.1371/journal.pone.0224097 |
[75] |
Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, Oliver TRW, Leongamornlert D, Ellis P, Noorani A, Mitchell TJ, Butler TM, Hooks Y, Warren AY, Jorgensen M, Dawson KJ, Menzies A, O'Neill L, Latimer C, Teng M, van Boxtel R, Iacobuzio-Donahue CA, Martincorena I, Heer R, Campbell PJ, Fitzgerald RC, Stratton MR, Rahbari R. The mutational landscape of human somatic and germline cells. Nature, 2021, 597(7876): 381-386.
doi: 10.1038/s41586-021-03822-7 |
[76] |
Li RY, Di L, Li J, Fan WY, Liu YC, Guo WJ, Liu WL, Liu L, Li Q, Chen LP, Chen YM, Miao CW, Liu HJ, Wang YQ, Ma YL, Xu DS, Lin DX, Huang YY, Wang JB, Bai F, Wu C. A body map of somatic mutagenesis in morphologically normal human tissues. Nature, 2021, 597 (7876): 398-403.
doi: 10.1038/s41586-021-03836-1 |
[1] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[2] | 刘胜学,曹佳,安辉,周紫垣. 昆明山海棠诱导人白血病细胞HPRT基因突变的研究[J]. 遗传, 2000, 22(5): 305-308. |
[3] | 马明福,李练兵,曾维三,周利民,徐小丽. 金荞麦的致突、致畸研究[J]. 遗传, 1991, 13(3): 24-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: