遗传 ›› 2024, Vol. 46 ›› Issue (12): 1017-1027.doi: 10.16288/j.yczz.24-178
收稿日期:
2024-06-17
修回日期:
2024-08-29
出版日期:
2024-12-20
发布日期:
2024-09-06
通讯作者:
周红文,博士,主任医师,教授,研究方向:内分泌及代谢病学。E-mail: drhongwenzhou@njmu.edu.cn作者简介:
朱肖诚,硕士研究生,专业方向:内科学(内分泌及代谢病学)。E-mail: duanpingluchen@163.com
基金资助:
Xiaocheng Zhu(), Yiwen Wang, Hongwen Zhou(
)
Received:
2024-06-17
Revised:
2024-08-29
Published:
2024-12-20
Online:
2024-09-06
Supported by:
摘要:
GLP-1受体激动剂在临床上主要用于2型糖尿病的降糖治疗,并具有潜在的减重作用,而目前也开始尝试应用于治疗高血压、非酒精性肝病、抑郁症及神经退行性疾病等病症。尤其在阿尔茨海默症的治疗方面,大量的动物模型及一些临床研究已经展现了GLP-1受体激动剂潜在的疗效,它有很大可能成为治疗阿尔茨海默症药物谱的新秀。目前关于GLP-1受体激动剂治疗阿尔茨海默症的机制的研究,主要基于深入剖析阿尔茨海默症的致病机理,以及探索其与糖尿病的共病机制等方面展开。本文主要综述了GLP-1受体激动剂在治疗阿尔茨海默症的机制方面的最新进展,并介绍了目前在动物研究及临床研究中的最新成果,以期为后续GLP-1受体激动剂治疗阿尔茨海默症的基础研究和临床应用提供参考。
朱肖诚, 王依文, 周红文. GLP-1受体激动剂治疗阿尔茨海默症的机制及相关研究进展[J]. 遗传, 2024, 46(12): 1017-1027.
Xiaocheng Zhu, Yiwen Wang, Hongwen Zhou. The mechanism and related research progress of GLP-1 receptor agonists in treating Alzheimer’s disease[J]. Hereditas(Beijing), 2024, 46(12): 1017-1027.
[1] |
Erbil D, Eren CY, Demirel C, Küçüker MU, Solaroğlu I, Eser HY. GLP-1's role in neuroprotection: a systematic review. Brain Inj, 2019, 33(6): 734-819.
doi: 10.1080/02699052.2019.1587000 pmid: 30938196 |
[2] | Laurindo LF, Barbalho SM, Guiguer EL, da Silva Soares de Souza M, de Souza GA, Fidalgo TM, Araújo AC, de Souza Gonzaga HF, de Bortoli Teixeira D, de Oliveira Silva Ullmann T, Sloan KP, Sloan LA. GLP-1a: going beyond traditional use. Int J Mol Sci, 2022, 23(2): 739. |
[3] | Li QX, Gao H, Guo YX, Wang BY, Hua RX, Gao L, Shang HW, Lu X, Xu JD. GLP-1 and underlying beneficial actions in Alzheimer's disease, hypertension, and NASH. Front Endocrinol (Lausanne), 2021, 12: 721198. |
[4] |
Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience, 1997, 77(1): 257-270.
doi: 10.1016/s0306-4522(96)00434-4 pmid: 9044391 |
[5] |
Calsolaro V, Edison P. Novel GLP-1 (glucagon-like peptide-1) analogues and insulin in the treatment for Alzheimer's disease and other neurodegenerative diseases. CNS Drugs, 2015, 29(12): 1023-1039.
doi: 10.1007/s40263-015-0301-8 pmid: 26666230 |
[6] |
Alvarez E, Roncero I, Chowen JA, Thorens B, Blazquez E. Expression of the glucagon-like peptide-1 receptor gene in rat brain. J Neurochem, 1996, 66(3): 920-927.
pmid: 8769850 |
[7] |
Hamilton A, Hölscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport, 2009, 20(13): 1161-1166.
doi: 10.1097/WNR.0b013e32832fbf14 pmid: 19617854 |
[8] |
Yan TT, Ding F, Zhao Y. Integrated identification of key genes and pathways in Alzheimer's disease via comprehensive bioinformatical analyses. Hereditas, 2019, 156: 25.
doi: 10.1186/s41065-019-0101-0 pmid: 31346329 |
[9] | Abd El-Rady NM, Ahmed A, Abdel-Rady MM, Ismail OI. Glucagon-like peptide-1 analog improves neuronal and behavioral impairment and promotes neuroprotection in a rat model of aluminum-induced dementia. Physiol Rep, 2021, 8(24): e14651. |
[10] |
Lane CA, Hardy J, Schott JM. Alzheimer's disease. Eur J Neurol, 2018, 25(1): 59-70.
doi: 10.1111/ene.13439 pmid: 28872215 |
[11] | Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci, 2020, 256: 117996. |
[12] | Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine, 2019, 14: 5541-5554. |
[13] |
Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L. Uncontrolled diabetes increases the risk of Alzheimer's disease: a population-based cohort study. Diabetologia, 2009, 52(6): 1031-1039.
doi: 10.1007/s00125-009-1323-x pmid: 19280172 |
[14] |
Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol, 2011, 71(3): 365-376.
doi: 10.1111/j.1365-2125.2010.03830.x pmid: 21284695 |
[15] |
Craft S. Insulin resistance and Alzheimer's disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res, 2007, 4(2): 147-152.
doi: 10.2174/156720507780362137 pmid: 17430239 |
[16] |
Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol, 2020, 19(9): 758-766.
doi: S1474-4422(20)30231-3 pmid: 32730766 |
[17] | Bae CS, Song J. The role of glucagon-like peptide 1 (GLP1) in type 3 diabetes: GLP-1 controls insulin resistance, neuroinflammation and neurogenesis in the brain. Int J Mol Sci, 2017, 18(11): 2493. |
[18] | Muñoz-Jiménez M, Zaarkti A, García-Arnés JA, García-Casares N. Antidiabetic drugs in Alzheimer's disease and mild cognitive impairment: a systematic review. Dement Geriatr Cogn Disord, 2020, 49(5): 423-434. |
[19] | Zamora MG, García-Lluch G, Moreno L, Pardo J, Pericas CC. Assessment of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and other antidiabetic agents in Alzheimer's disease: a population-based study. Pharmacol Res, 2024, 206: 107295. |
[20] | Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC le Roux CW, Violante Ortiz R, Jensen CB, Wilding JP, SCALE Obesity and Prediabetes NN8022-1839 Study Group. A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med, 2015, 373(1): 11-22. |
[21] |
Rakipovski G, Rolin B, Nøhr J, Klewe I, Frederiksen KS, Augustin R, Hecksher-Sørensen J, Ingvorsen C, Polex-Wolf J, Knudsen LB. The GLP-1 analogs Liraglutide and Semaglutide reduce atherosclerosis in ApoE(-/-) and LDLr(-/-) mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci, 2018, 3(6): 844-857.
doi: 10.1016/j.jacbts.2018.09.004 pmid: 30623143 |
[22] |
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev, 2011, 91(2): 461-553.
doi: 10.1152/physrev.00011.2010 pmid: 21527731 |
[23] |
Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease. J Endocrinol, 2009, 202(3): 431-439.
doi: 10.1677/JOE-09-0132 pmid: 19570816 |
[24] | Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638):481-487. |
[25] |
Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Kwon SH, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D, Kang SU, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S, Dawson TM, Ko HS. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med, 2018, 24(7): 931-938.
doi: 10.1038/s41591-018-0051-5 pmid: 29892066 |
[26] |
Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A. Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer's pathology. J Cell Mol Med, 2008, 12(6A): 2255-2262.
doi: 10.1111/j.1582-4934.2008.00496.x pmid: 18793350 |
[27] | Zhang MJ, Wu YB, Gao RN, Chen XW, Chen RY, Chen Z. Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer's disease by suppressing NLRP2 activation in astrocytes. Mol Cell Endocrinol, 2022, 542: 111529. |
[28] |
Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, Yabut JM, Seeley RJ, Brown TJ, Drucker DJ. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab, 2024, 36(1): 130-143.e5.
doi: 10.1016/j.cmet.2023.11.009 pmid: 38113888 |
[29] |
Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, Tsui W, Ginestroni A, Bessi V, Fayyazz M, Caffarra P, Pupi A. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J Nucl Med, 2006, 47(11): 1778-1786.
pmid: 17079810 |
[30] | Hunt A, Schönknecht P, Henze M, Seidl U, Haberkorn U, Schroder J. Reduced cerebral glucose metabolism in patients at risk for Alzheimer's disease. Psychiatry Res, 2007, 155(2): 147-154. |
[31] |
Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med, 1995, 36(7): 1238-1248.
pmid: 7790950 |
[32] |
Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med, 2008, 49(3): 390-398.
doi: 10.2967/jnumed.107.045385 pmid: 18287270 |
[33] |
Gejl M, Gjedde A, Egefjord L, Moller A, Hansen SB, Vang K, Rodell A, Brændgaard H, Gottrup H, Schacht A, Møller N, Brock B, Rungby J. In Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci, 2016, 8: 108.
doi: 10.3389/fnagi.2016.00108 pmid: 27252647 |
[34] | Gejl M, Rungby J, Brock B, Gjedde A. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose. Basic Clin Pharmacol Toxicol, 2014, 115(2): 162-171. |
[35] |
Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease. Ann Neurol, 1994, 35(5): 546-551.
pmid: 8179300 |
[36] |
Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett, 2008, 582(2): 359-364.
doi: 10.1016/j.febslet.2007.12.035 pmid: 18174027 |
[37] | Gejl M, Egefjord L, Lerche S, Vang K, Bibby BM, Holst JJ, Mengel A, Møller N, Rungby J, Brock B, Gjedde A. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia. J Cereb Blood Flow Metab, 2012, 32(12): 2146-2152. |
[38] |
Gejl M, Lerche S, Egefjord L, Brock B, Møller N, Vang K, Rodell AB, Bibby BM, Holst JJ, Rungby J, Gjedde A. Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain. Front Neuroenergetics, 2013, 5: 2.
doi: 10.3389/fnene.2013.00002 pmid: 23543638 |
[39] |
Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, Hampel B, Goldau J, Alber J, Förster CY, Eming SA, Schwaninger M, Ferrara N, Karsenty G, Brüning JC. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell, 2016, 165(4): 882-895.
doi: 10.1016/j.cell.2016.03.033 pmid: 27133169 |
[40] | Xie XY, Mo ZH, Chen K, He HH, Xie YH. Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med Sci Monit, 2011, 17(2): BR35-BR41. |
[41] |
Andreozzi F, Raciti GA, Nigro C, Mannino GC, Procopio T, Davalli AM, Beguinot F, Sesti G, Miele C, Folli F. The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. J Transl Med, 2016, 14(1): 229.
doi: 10.1186/s12967-016-0985-7 pmid: 27473212 |
[42] |
Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis, 2005, 7(1): 63-80.
doi: 10.3233/jad-2005-7107 pmid: 15750215 |
[43] | Sebastiao I, Candeias E, Santos MS, de Oliveira CR, Moreira PI, Duarte AI. Insulin as a bridge between type 2 diabetes and Alzheimer disease—How anti-diabetics could be a solution for dementia. Front Endocrinol (Lausanne), 2014, 5: 110. |
[44] |
Benedict C, Frey WH 2nd, Schiöth HB, Schultes B, Born J, Hallschmid M. Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol, 2011, 46(2-3): 112-115.
doi: 10.1016/j.exger.2010.08.026 pmid: 20849944 |
[45] |
Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA. Intranasal insulin in Alzheimer's dementia or mild cognitive impairment: a systematic review. J Neurol, 2018, 265(7): 1497-1510.
doi: 10.1007/s00415-018-8768-0 pmid: 29392460 |
[46] | Leclerc M, Bourassa P, Tremblay C, Caron V, Sugère C, Emond V, Bennett DA, Calon F. Cerebrovascular insulin receptors are defective in Alzheimer's disease. Brain, 2023, 146(1): 75-90. |
[47] |
Zheng MC, Wang PW. Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech, 2021, 11(4): 179.
doi: 10.1007/s13205-021-02738-3 pmid: 33927970 |
[48] | Dubey SK, Lakshmi KK, Krishna KV, Agrawal M, Singhvi G, Saha RN, Saraf S, Saraf S, Shukla R, Alexander A. Insulin mediated novel therapies for the treatment of Alzheimer's disease. Life Sci, 2020, 249: 117540. |
[49] |
Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell, 2015, 163(5): 1064-1078.
doi: S0092-8674(15)01423-3 pmid: 26590417 |
[50] |
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim Biophys Acta, 2016, 1862(5): 887-900.
doi: 10.1016/j.bbadis.2015.12.016 pmid: 26705676 |
[51] |
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV. Blood-brain barrier breakdown in the aging human hippocampus. Neuron, 2015, 85(2): 296-302.
doi: 10.1016/j.neuron.2014.12.032 pmid: 25611508 |
[52] |
Brundel M, Heringa SM, de Bresser J, Koek HL, Zwanenburg JJ, Jaap Kappelle L, Luijten PR, Biessels GJ. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer's disease. J Alzheimers Dis, 2012, 31(2): 259-263.
doi: 10.3233/JAD-2012-120364 pmid: 22531417 |
[53] |
Shams S, Wahlund LO. Cerebral microbleeds as a biomarker in Alzheimer's disease? A review in the field. Biomark Med, 2016, 10(1): 9-18.
doi: 10.2217/bmm.15.101 pmid: 26641942 |
[54] | Halliday MR, Rege SV, Ma QY, Zhao Z, Miller CA, Winkler EA, Zlokovic BV. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J Cereb Blood Flow Metab, 2016, 36(1): 216-227. |
[55] |
Zhao L, Li ZQ, Vong JSL, Chen XY, Lai HM, Yan LYC, Huang JZ, Sy SKH, Tian XY, Huang Y, Chan HYE, So HC, Ng WL, Tang YM, Lin WJ, Mok VCT, Ko H. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat Commun, 2020, 11(1): 4413.
doi: 10.1038/s41467-020-18249-3 pmid: 32887883 |
[56] |
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580): 353-356.
doi: 10.1126/science.1072994 pmid: 12130773 |
[57] |
Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides, 2015, 52: 1-18.
doi: 10.1016/j.npep.2015.06.008 pmid: 26149638 |
[58] |
Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci, 1998, 21(10): 428-433.
pmid: 9786340 |
[59] |
Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol, 2009, 118(1): 53-69.
doi: 10.1007/s00401-009-0486-3 pmid: 19184068 |
[60] |
Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso Adel C. Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull, 2014, 30(2): 346-358.
doi: 10.1007/s12264-013-1414-z pmid: 24733656 |
[61] | Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-Daim MM, Stankiewicz AM. Autophagy and Alzheimer's disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci. 2018; 10: 04. |
[62] | Tung YT, Wang BJ, Hu MK, Hsu WM, Lee H, Huang WP, Liao YF. Autophagy: a double-edged sword in Alzheimer's disease. J Biosci, 2012, 37(1): 157-165. |
[63] | Kong JJ, Wan LP, Wang YF, Zhang H, Zhang W. Liraglutide attenuates Abeta42 generation in APPswe/ SH-SY5Y cells through the regulation of autophagy. Neuropsychiatr Dis Treat, 2020, 16: 1817-1825. |
[64] |
Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci, 2001, 21(8): 2561-2570.
pmid: 11306609 |
[65] |
Yu Y, Run XQ, Liang ZH, Li Y, Liu F, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX. Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases. J Neurochem, 2009, 108(6): 1480-1494.
doi: 10.1111/j.1471-4159.2009.05882.x pmid: 19183272 |
[66] | Welsh GI, Proud CG. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J, 1993, 294(Pt 3): 625-629. |
[67] | Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378(6559): 785-789. |
[68] | Qi LQ, Chen Z, Wang YP, Liu XY, Liu XH, Ke LF, Zheng ZJ, Lin XW, Zhou Y, Wu LJ, Liu LB. Subcutaneous liraglutide ameliorates methylglyoxal-induced Alzheimer- like tau pathology and cognitive impairment by modulating tau hyperphosphorylation and glycogen synthase kinase-3beta. Am J Transl Res, 2017, 9(2): 247-260. |
[69] |
Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 2008, 33(1): 18-41.
doi: 10.1038/sj.npp.1301559 pmid: 17728696 |
[70] |
Magee JC, Grienberger C. Synaptic plasticity forms and functions. Annu Rev Neurosci, 2020, 43: 95-117.
doi: 10.1146/annurev-neuro-090919-022842 pmid: 32075520 |
[71] |
Klyubin I, Walsh DM, Cullen WK, Fadeeva JV, Anwyl R, Selkoe DJ, Rowan MJ. Soluble Arctic amyloid beta protein inhibits hippocampal long-term potentiation in vivo. Eur J Neurosci, 2004, 19(10): 2839-2846.
pmid: 15147317 |
[72] |
Holscher C, Gengler S, Gault VA, Harriott P, Mallot HA. Soluble beta-amyloid[25-35] reversibly impairs hippocampal synaptic plasticity and spatial learning. Eur J Pharmacol, 2007, 561(1-3): 85-90.
pmid: 17320856 |
[73] |
Abbas T, Faivre E, Hölscher C. Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: Interaction between type 2 diabetes and Alzheimer's disease. Behav Brain Res, 2009, 205(1): 265-271.
doi: 10.1016/j.bbr.2009.06.035 pmid: 19573562 |
[74] |
Gault VA, Hölscher C. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. Eur J Pharmacol, 2008, 587(1-3): 112-117.
doi: 10.1016/j.ejphar.2008.03.025 pmid: 18466898 |
[75] |
McClean PL, Gault VA, Harriott P, Holscher C. Glucagon- like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer's disease. Eur J Pharmacol, 2010, 630(1-3): 158-162.
doi: 10.1016/j.ejphar.2009.12.023 pmid: 20035739 |
[76] |
Qin ZX, Sun ZW, Huang J, Hu YH, Wu ZR, Mei B. Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-beta peptide (1-42). Neurosci Lett, 2008, 444(3): 217-221.
doi: 10.1016/j.neulet.2008.08.047 pmid: 18760331 |
[77] |
Li YZ, Glotfelty EJ, Karlsson T, Fortuno LV, Harvey BK, Greig NH. The metabolite GLP-1 (9-36) is neuroprotective and anti-inflammatory in cellular models of neurodegeneration. J Neurochem, 2021, 159(5): 867-886.
doi: 10.1111/jnc.15521 pmid: 34569615 |
[78] |
Hansen HH, Fabricius K, Barkholt P, Niehoff ML, Morley JE, Jelsing J, Pyke C, Knudsen LB, Farr SA, Vrang N. The GLP-1 receptor agonist Liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer's disease. J Alzheimers Dis, 2015, 46(4): 877-888.
doi: 10.3233/JAD-143090 pmid: 25869785 |
[79] |
Hansen HH, Barkholt P, Fabricius K, Jelsing J, Terwel D, Pyke C, Knudsen LB, Vrang N. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. Brain Res, 2016, 1634: 158-170.
doi: S0006-8993(15)00991-9 pmid: 26746341 |
[80] |
Dei Cas A, Micheli MM, Aldigeri R, Gardini S, Ferrari-Pellegrini F, Perini M, Messa G, Antonini M, Spigoni V, Cinquegrani G, Vazzana A, Moretti V, Caffarra P, Bonadonna RC. Long-acting exenatide does not prevent cognitive decline in mild cognitive impairment: a proof-of-concept clinical trial. J Endocrinol Invest, 2024, 47(9): 2339-2349.
doi: 10.1007/s40618-024-02320-7 pmid: 38565814 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: