遗传 ›› 2025, Vol. 47 ›› Issue (4): 428-436.doi: 10.16288/j.yczz.24-192

• 综述 • 上一篇    下一篇

基因组光学图谱技术在疾病诊断中的应用与研究

权静1,2(), 肖艳群1, 卢大儒2(), 鲍芸1()   

  1. 1.上海市临床检验中心,上海 200126
    2.复旦大学生命科学学院,上海 200438
  • 收稿日期:2024-09-27 修回日期:2024-12-06 出版日期:2025-04-20 发布日期:2024-12-25
  • 通讯作者: 鲍芸,博士,副主任技师,研究方向:临床分子生物学。E-mail: baoyun@sccl.org.cn;
    卢大儒,博士,教授,研究方向:遗传病,分子检测与基因诊断。E-mail: drlu@fudan.edu.cn
  • 作者简介:权静,硕士,主管技师,研究方向:遗传咨询、临床分子生物学。E-mail: quanjing@sccl.org.cn
  • 基金资助:
    国家重点研发专项课题(2023YFC2705602);上海市临床检验中心自选课题(2023ZXKT-02);上海市卫生健康委员会卫生行业临床研究专项(202240271);上海市“医苑新星”青年医学人才培养资助计划(2022-65)

Application and research of genomic optical mapping technology in disease diagnosis

Jing Quan1,2(), Yanqun Xiao1, Daru Lu2(), Yun Bao1()   

  1. 1. Shanghai Clinical Laboratory Center, Shanghai 200126, China
    2. School of Life Sciences, Fudan University, Shanghai 200438, China
  • Received:2024-09-27 Revised:2024-12-06 Published:2025-04-20 Online:2024-12-25
  • Supported by:
    National Key Research and Development Project(2023YFC2705602);Shanghai Center for Clinical Laboratory General Fund(2023ZXKT-02);Shanghai Municipal Health Commission Resarch Project(202240271);Shanghai “Rising Stars of Medical Talent” Youth Development Program(2022-65)

摘要:

随着基因组研究的不断深入,越来越多的研究发现结构变异(structural variantions,SVs)在人类进化及疾病发生发展中发挥着重要作用,由此SVs也引起了临床研究的广泛关注。近年来,基因组光学图谱技术(optical genome mapping, OGM)作为一种高分辨率、超长读长、自动化的新型非测序基因检测技术凸显了在SVs研究中的优势。与核型(karotyping)、荧光原位杂交(fluorescence in situ hybridization,FISH)、染色体微阵列分析(chromosomal microarray analysis,CMA)及高通量测序技术相比,OGM可一次性检测全基因组范围内的结构和数目异常,包括染色体非整倍体、插入、缺失、重复、倒位、平衡易位以及复杂结构变异等,且OGM检测分辨率高至500 bp,因其分辨率高和分析片段长度长的检测特性,又被称为下一代细胞遗传学技术,对基因组结构变异检测具有重大应用价值。本文主要对OGM检测方法及其在疾病相关SVs诊断中的应用研究进行了综述,旨在为SVs在疾病诊断领域中的研究提供参考和借鉴。

关键词: 结构变异, 基因组光学图谱, 疾病诊断应用

Abstract:

In the continuous progression of genomic research, an increasing number of investigations have revealed that structural variations (SVs) hold a vital role in human evolution and the pathogenesis of diseases. Consequently, SVs have attracted extensive attention within the realm of clinical research.In recent years, optical genome mapping (OGM), which represents a high-resolution, ultra-long-read, automated, non-sequencing genomic detection technique, has exhibited remarkable advantages in the exploration of structural variations. When compared with karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and high-throughput sequencing technologies, OGM is capable of detecting structural and numerical aberrations throughout the entire genome in a single assay. These encompass aneuploidy, insertions, deletions, duplications, inversions, balanced translocations, and complex structural variations. With a detection resolution reaching as high as 500 bp, OGM is alternatively designated as the next-generation cytogenetic technology due to its high-resolution and long-fragment analysis capabilities. This endows it with substantial practical value in the detection of genomic structural variations. In this review, we comprehensively summarize the application of OGM methods in the detection of disease-related SVs, with the intention of providing valuable references and profound insights for SVs research, especially in the domain of disease diagnosis.

Key words: structural variations, optical genome mapping, diagnosis of disease-related SVs