遗传

• 综述 •    

计算方法在m6A研究中的应用及展望

雷定伟1,顾睿初2,谢晓雪2,丁时之3,温翰3,4,5
  

  1. 1. 北京大学药学院,北京 100191


    2. 北京大学生命科学学院,北京 100871

    3. 北京科学智能研究院,北京 100084

    4. 北京大学核糖核酸研究中心,北京 100871

    5. 上海算法创新研究院,上海 200125


  • 收稿日期:2025-02-26 修回日期:2026-06-19 出版日期:2025-06-24 发布日期:2025-06-24

Application and Prospects of Current Computational Methods in m6A Research: a Comprehensive Review

Dingwei Lei1, Ruichu Gu2, Xiaoxue Xie2, Shizhi Ding3, Han Wen3,4,5   

  1. 1. School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

    2. School of Life Sciences, Peking University, Beijing 100871, China

    3. AI for Science Institute, Beijing 100084, China

    4. Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China

    5. Institute for Advanced Algorithms Research, Shanghai 200125, China

  • Received:2025-02-26 Revised:2026-06-19 Published:2025-06-24 Online:2025-06-24

摘要: N6-甲基腺嘌呤(m6A)修饰是真核生物mRNA中最丰富的修饰形式,对mRNA的剪接、加工、降解和翻译的调控具有关键作用。本文介绍了计算方法在m6A修饰研究中的应用,主要有数据驱动的方法预测m6A位点以及基于分子动力学方法探究m6A相关生物机制。文章首先回顾了m6A检测技术的发展历程,阐述了相应的数据处理方法,并整理了现有公开数据集,为计算模型的构建奠定数据基础。接着重点讨论机器学习与深度学习模型在m6A位点预测中的研究进展。最后描述了分子动力学模拟在解析m6A相关分子机制的贡献,展示了计算方法如何促进对这一复杂的表观遗传调控过程的理解。通过系统梳理相关内容,本文深入探讨了计算方法在m6A修饰领域的最新研究进展及其应用价值,为m6A相关的深入研究提供新的思路与启示。

关键词: N6-甲基腺嘌呤修饰, 修饰检测方法, 修饰位点预测, 人工智能算法, 分子动力学模拟

Abstract: N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic mRNA, playing a pivotal role in regu-lating various aspects of mRNA metabolism, including splicing, processing, degradation, and translation. This re-view provides a comprehensive overview of computational strategies employed in m6A research, with an emphasis on data-driven methodologies for the prediction of m6A sites and molecular dynamics simulations for deciphering m6A-associated biological mechanisms. The article first discusses the evolution of m6A detection technologies, out-lines the corresponding data processing methods, and summarizes publicly available datasets that serve as essential resources for constructing computational models. Subsequently, we highlight research advancements in machine learning and deep learning models for m6A site prediction. Finally, we demonstrate the contributions of molecular dynamics simulations in unravelling m6A-related molecular mechanisms, illustrating how computational methods facilitate the understanding of this complex epigenetic regulation. By systematically synthesizing relevant content, this review further discusses the latest research progress and application values of computational methods in m6A modification, offering new perspectives and insights for in-depth investigations.

Key words: N6-methyladenosine modification, modification detection method, modification sites prediction, artificial intelli-gence algorithm, molecular dynamic simulation