遗传 ›› 2025, Vol. 47 ›› Issue (10): 1156-1168.doi: 10.16288/j.yczz.25-009
杨琪1,2(), 康克莱2, 赵博3,4, 冯凯3,4, 冯耀森2, 叶健1,2(
), 邓晔3,4(
), 王乐2(
)
收稿日期:
2025-02-12
修回日期:
2025-03-20
出版日期:
2025-10-20
发布日期:
2025-03-21
通讯作者:
叶健,博士,主任法医师,研究方向:法医遗传学。E-mail: yejian77@126.com;作者简介:
杨琪,博士研究生,研究方向:法医遗传学。E-mail:458425932@qq.com
基金资助:
Qi Yang1,2(), Kelai Kang2, Bo Zhao3,4, Kai Feng3,4, Yaosen Feng2, Jian Ye1,2(
), Ye Deng3,4(
), Le Wang2(
)
Received:
2025-02-12
Revised:
2025-03-20
Published:
2025-10-20
Online:
2025-03-21
Supported by:
摘要: 灰尘中的微生物信息与地理位置密切相关,能为侦查破案提供线索,在法庭科学领域具有重要应用价值。然而,利用宏基因组数据集中微生物群落特征推断地理位置的可行性尚未得到充分探索。本研究从中国北部、东部、西南部和西北部四个具有明显地理和气候差异的城市中采集了170份城市住宅小区的环境灰尘样本,并对所有样本进行宏基因组鸟枪测序,以揭示微生物组成的差异。共注释获得41,029个物种,其中细菌占93.39%,真核生物占6.37%,并发现少量的病毒(0.21%)和古菌(0.03%)。结果表明,四个城市之间的微生物群落组成存在显著差异,这些差异可以实现四个城市环境样本的有效区分(R2=0.870,P<0.001)。通过过滤所有样本中检出率低于10%的物种,进一步提高了城市间的区分效果(R2=0.948,P<0.001),并筛选出127个具有城市代表性的差异物种。每个城市都拥有独特的微生物群落,包括特有物种和相对丰度较高的分类单元,这些特征共同构成了城市特有的微生物图谱。所有样本按7∶3的比例随机分为训练集和测试集。通过SourceTracker、FEAST、LightGBM、随机森林(random forest)和支持向量机(support vector machine, SVM)五种机器学习模型对51个随机测试集来模拟预测未知来源的环境样本地理分区,平均准确率分别达到了88.89%、92.16%、98.04%、99.35%、69.28%。这些结果构成了中国四个城市的微生物遗传图谱,突出了不同城市微生物分类特征的显著差异,并为城市尺度的灰尘样本溯源提供了一种方法。
杨琪, 康克莱, 赵博, 冯凯, 冯耀森, 叶健, 邓晔, 王乐. 基于宏基因组鸟枪测序的中国典型城市灰尘地域推断研究[J]. 遗传, 2025, 47(10): 1156-1168.
Qi Yang, Kelai Kang, Bo Zhao, Kai Feng, Yaosen Feng, Jian Ye, Ye Deng, Le Wang. Geographical inference of dust from typical Chinese cities based on metagenomic shotgun sequencing[J]. Hereditas(Beijing), 2025, 47(10): 1156-1168.
附表1
北京采样点经纬度信息"
采样点 | 纬度 | 经度 | 采样点 | 纬度 | 经度 |
---|---|---|---|---|---|
BJ01-A | 40.009444 | 116.286111 | BJ15-C | 39.850833 | 116.428333 |
BJ02-C | 39.970833 | 116.252500 | BJ17-A | 39.841389 | 116.304444 |
BJ03-A | 39.920278 | 116.287222 | BJ17-B | 39.841111 | 116.303889 |
BJ03-C | 39.920833 | 116.287222 | BJ18-A | 39.889722 | 116.296111 |
BJ04-A | 39.986667 | 116.311944 | BJ18-C | 39.888889 | 116.295556 |
BJ04-C | 39.986944 | 116.314167 | BJ19-A | 39.907222 | 116.185556 |
BJ05-C | 39.855833 | 116.502500 | BJ20-B | 39.941944 | 116.203056 |
BJ06-A | 39.891111 | 116.513333 | BJ20-C | 39.908889 | 116.185833 |
BJ09-B | 39.897778 | 116.331389 | BJ21-B | 39.880000 | 116.373889 |
BJ09-C | 39.897778 | 116.333056 | BJ21-C | 39.880833 | 116.374167 |
BJ10-A | 39.892778 | 116.410556 | BJ22-C | 39.913889 | 116.361111 |
BJ10-B | 39.893611 | 116.410833 | BJ23-A | 39.943611 | 116.360556 |
BJ10-C | 39.893889 | 116.409722 | BJ23-C | 39.942778 | 116.359167 |
BJ11-A | 39.920833 | 116.406944 | BJ24-C | 39.919444 | 116.601389 |
BJ12-A | 39.949444 | 116.393889 | BJ25-A | 39.947500 | 116.450278 |
BJ12-B | 39.948889 | 116.394167 | BJ25-B | 39.947778 | 116.450000 |
BJ12-C | 39.949444 | 116.393889 | BJ25-C | 39.948333 | 116.450833 |
BJ14-A | 39.978333 | 116.412500 | BJ27-A | 39.957778 | 116.277222 |
BJ15-A | 39.851111 | 116.427778 | BJ27-B | 39.958333 | 116.276389 |
BJ15-B | 39.850833 | 116.428056 | BJ28-A | 40.032222 | 116.282500 |
附表2
福州采样点经纬度信息"
采样点 | 纬度 | 经度 | 采样点 | 纬度 | 经度 |
---|---|---|---|---|---|
FZ01-A | 25.953333 | 119.542778 | FZ11-A | 26.070556 | 119.331667 |
FZ02-B | 25.940833 | 119.490833 | FZ11-B | 26.070556 | 119.331944 |
FZ02-C | 25.941389 | 119.491111 | FZ11-D | 26.070278 | 119.331667 |
FZ03-A | 25.997778 | 119.456389 | FZ12-B | 26.088333 | 119.281944 |
FZ03-D | 25.997778 | 119.456667 | FZ12-C | 26.088611 | 119.281944 |
FZ04-A | 26.026944 | 119.394722 | FZ12-D | 26.087500 | 119.281667 |
FZ04-B | 26.026389 | 119.394722 | FZ13-B | 26.065000 | 119.280000 |
FZ04-C | 26.026389 | 119.394444 | FZ13-D | 26.065000 | 119.279444 |
FZ05-C | 25.984167 | 119.252778 | FZ15-C | 26.011389 | 119.278333 |
FZ05-D | 25.984167 | 119.252500 | FZ16-A | 26.048333 | 119.318611 |
FZ06-A | 25.903611 | 119.371667 | FZ16-B | 26.048333 | 119.318611 |
FZ06-B | 25.903611 | 119.371389 | FZ16-D | 26.048333 | 119.318611 |
FZ06-C | 25.903889 | 119.371389 | FZ17-B | 36.053056 | 119.343889 |
FZ07-A | 25.990278 | 119.353611 | FZ17-C | 36.053056 | 119.344167 |
FZ07-B | 25.990278 | 119.370556 | FZ19-A | 26.090000 | 119.335278 |
FZ07-C | 25.990000 | 119.371111 | FZ19-B | 26.090556 | 119.335000 |
FZ09-A | 26.018056 | 119.320833 | FZ20-B | 26.146944 | 119.333889 |
FZ09-D | 26.018056 | 119.321389 | FZ20-D | 26.146667 | 119.334167 |
FZ10-A | 26.048056 | 119.365556 | FZ21-A | 26.147778 | 119.311667 |
FZ10-C | 26.048333 | 119.364167 | FZ22-B | 26.133611 | 119.283889 |
FZ10-D | 26.047778 | 119.365000 | FZ23-B | 26.106389 | 119.288333 |
附表3
昆明采样点经纬度信息"
采样点 | 纬度 | 经度 | 采样点 | 纬度 | 经度 |
---|---|---|---|---|---|
KM02-A | 24.850556 | 102.823889 | KM16-C | 25.026111 | 102.874167 |
KM02-B | 24.850556 | 102.823889 | KM17-A | 25.054167 | 102.796667 |
KM02-C | 24.857778 | 102.863056 | KM17-C | 25.053333 | 102.795278 |
KM03-A | 24.843611 | 102.845556 | KM18-A | 25.046389 | 102.741944 |
KM03-D | 24.844167 | 102.846667 | KM18-B | 25.046111 | 102.742500 |
KM04-A | 24.761667 | 102.803056 | KM18-C | 25.045833 | 102.741944 |
KM05-B | 25.010833 | 102.782500 | KM19-A | 25.085556 | 102.727778 |
KM06-B | 24.980278 | 102.822778 | KM19-B | 25.085278 | 102.727500 |
KM08-C | 24.996667 | 102.735556 | KM20-B | 25.041667 | 102.650556 |
KM09-A | 25.030556 | 102.752222 | KM20-C | 25.041667 | 102.650556 |
KM09-B | 25.030278 | 102.753333 | KM20-D | 25.042500 | 102.650000 |
KM09-C | 25.030833 | 102.751944 | KM21-A | 25.075556 | 102.697222 |
KM09-D | 25.031111 | 102.751944 | KM21-C | 25.072500 | 102.699444 |
KM10-A | 25.010278 | 102.624444 | KM22-B | 25.119722 | 102.745278 |
KM11-A | 25.042778 | 102.637500 | KM22-C | 25.119167 | 102.746667 |
KM11-C | 25.010278 | 102.624444 | KM22-D | 25.118611 | 102.745556 |
KM12-A | 25.054722 | 102.653333 | KM23-A | 25.953889 | 102.779444 |
KM13-A | 25.110833 | 102.719167 | KM23-C | 25.953889 | 102.779444 |
KM13-B | 25.110833 | 102.719167 | KM24-B | 25.988333 | 102.817222 |
KM13-C | 25.110833 | 102.719167 | KM24-C | 25.988611 | 102.817500 |
KM14-A | 25.095278 | 102.665556 | KM25-B | 25.003056 | 102.781111 |
KM15-B | 25.006667 | 102.822778 | KM26-B | 25.998056 | 102.782778 |
KM15-C | 25.006389 | 102.822500 | KM27-A | 25.856111 | 102.861111 |
KM15-D | 25.006111 | 102.823056 |
附表4
乌鲁木齐采样点经纬度信息"
采样点 | 纬度 | 经度 | 采样点 | 纬度 | 经度 |
---|---|---|---|---|---|
WQ01-A | 43.812222 | 87.634444 | WQ11-C | 43.842778 | 87.401389 |
WQ01-B | 43.812222 | 87.634722 | WQ12-A | 43.869167 | 87.426111 |
WQ02-A | 43.795278 | 87.610833 | WQ12-C | 43.868611 | 87.426667 |
WQ02-B | 43.795000 | 87.610833 | WQ13-B | 43.840833 | 87.497222 |
WQ03-A | 43.813611 | 87.608333 | WQ13-C | 43.840833 | 87.496944 |
WQ03-B | 43.813611 | 87.608889 | WQ14-C | 43.883611 | 87.651111 |
WQ03-C | 43.813611 | 87.608889 | WQ16-A | 43.818611 | 87.620000 |
WQ03-D | 43.813889 | 87.608611 | WQ16-C | 43.818889 | 87.619722 |
WQ04-A | 43.744722 | 87.559722 | WQ19-C | 43.965833 | 87.660556 |
WQ05-A | 43.764722 | 87.647778 | WQ20-B | 43.953611 | 87.690278 |
WQ05-B | 43.764722 | 87.647778 | WQ22-A | 43.890556 | 87.492778 |
WQ05-C | 43.765000 | 87.647500 | WQ22-C | 43.890833 | 87.493056 |
WQ05-D | 43.765000 | 87.647500 | WQ23-A | 43.906944 | 87.575556 |
WQ06-A | 43.815278 | 87.542500 | WQ23-B | 43.907222 | 87.575556 |
WQ06-B | 43.815278 | 87.542778 | WQ23-C | 43.906944 | 87.575833 |
WQ06-C | 43.815556 | 87.543056 | WQ24-A | 43.863056 | 87.598056 |
WQ07-B | 43.798889 | 87.524722 | WQ24-B | 43.863056 | 87.597778 |
WQ08-A | 43.792500 | 87.553056 | WQ24-C | 43.863333 | 87.598056 |
WQ09-C | 43.790278 | 87.656944 | WQ25-A | 43.857500 | 87.540000 |
WQ10-C | 43.830278 | 87.678056 | WQ25-C | 43.857222 | 87.539444 |
WQ11-A | 43.843611 | 87.400556 |
[1] | Amendt J. Insects help to solve crimes. Springer Berlin Heidelberg, 2011, 227-24. |
[2] | Liu MY, Zhao W, Zhao Y. Diatom test: development and application status in forensic diagnosis of drowning. Forensic Science and Technology, 2019, 44(4): 343-346. |
刘萌妍, 赵伟, 赵怡. 硅藻检验方法及其在法医学溺死诊断中的应用现状. 刑事技术, 2019, 44(4): 343-346. | |
[3] | Zhang ZL, Liang WB, Sun HB, Yang X, Ma LY, Zheng ZX. Forensic application of plant evidence. Journal of Forensic Medicine, 2021, 37(1): 87-90, 98. |
张子龙, 梁伟波, 孙红兵, 杨鑫, 马丽英, 郑志祥. 植物物证的法医学应用. 法医学杂志, 2021, 37(1): 87-90, 98. | |
[4] | 梁蕾. 豆荚作证. 现代世界警察, 2017, 6: 80-83. |
[5] | Yang Q, Kang KL, Mei HC, Peng JJ, Yuan JH, Feng YS, Ye J, Ji AQ, Wang L. Research progress on environmental DNA detection and geographical origin inference in forensic science. Chin J Forensic Med, 2024, 39(3): 349-356. |
杨琪, 康克莱, 梅宏成, 彭加金, 袁嘉辉, 冯耀森, 叶健, 季安全, 王乐. 环境DNA检验及地域来源推断研究进展. 中国法医学杂志, 2024, 39(3): 349-356. | |
[6] | Nazzal Y, Howari FM, Yaslam A, Iqbal J, Maloukh L, Ambika LK, Al-Taani AA, Ali I, Othman EM, Jamal A, Naseem M. A methodological review of tools that assess dust microbiomes, Metatranscriptomes and the particulate chemistry of indoor dust. Atmosphere, 2022, 13(8): 1276. |
[7] |
Park JH, Lemons AR, Roseman J, Green BJ, Cox-Ganser JM. Bacterial community assemblages in classroom floor dust of 50 public schools in a large city: characterization using 16S rRNA sequences and associations with environmental factors. Microbiome, 2021, 9(1): 15.
pmid: 33472703 |
[8] |
Zendoia II, Barandika JF, Hurtado A, López CM, Alonso E, Beraza X, Ocabo B, García-Pérez AL. Analysis of environmental dust in goat and sheep farms to assess Coxiella burnetii infection in a Q fever endemic area: geographical distribution, relationship with human cases and genotypes. Zoonoses Public Health, 2021, 68(6): 666-676.
pmid: 34240552 |
[9] |
Danko D, Bezdan D, Afshin EE, Ahsanuddin S, Bhattacharya C, Butler DJ, Chng KR, Donnellan D, Hecht J, Jackson K, Kuchin K, Karasikov M, Lyons A, Mak L, Meleshko D, Mustafa H, Mutai B, Neches RY, Ng A, Nikolayeva O, Nikolayeva T, Png E, Ryon KA, Sanchez JL, Shaaban H, Sierra MA, Thomas D, Young B, Abudayyeh OO, Alicea J, Bhattacharyya M, Blekhman R, Castro-Nallar E, Cañas AM, Chatziefthimiou AD, Crawford RW, De Filippis F, Deng YP, Desnues C, Dias-Neto E, Dybwad M, Elhaik E, Ercolini D, Frolova A, Gankin D, Gootenberg JS, Graf AB, Green DC, Hajirasouliha I, Hastings JJA, Hernandez M, Iraola G, Jang S, Kahles A, Kelly FJ, Knights K, Kyrpides NC, Łabaj PP, Lee PKH, Leung MHY, Ljungdahl PO, Mason-Buck G, McGrath K, Meydan C, Mongodin EF, Moraes MO, Nagarajan N, Nieto-Caballero M, Noushmehr H, Oliveira M, Ossowski S, Osuolale OO, Özcan O, Paez-Espino D, Rascovan N, Richard H, Rätsch G, Schriml LM, Semmler T, Sezerman OU, Shi L, Shi T, Siam R, Song LH, Suzuki H, Court DS, Tighe SW, Tong X, Udekwu KI, Ugalde JA, Valentine B, Vassilev DI, Vayndorf EM, Velavan TP, Wu J, Zambrano MM, Zhu JF, Zhu SB, Mason CE, International MetaSUB Consortium. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell, 2021, 184(13): 3376-3393.e17.
pmid: 34043940 |
[10] | Xie JP, Han YB, Liu G, Bai LQ. Research advances on microbial genetics in China in 2015. Hereditas (Beijing), 2016, 38(9): 765-790. |
谢建平, 韩玉波, 刘钢, 白林泉. 2015年中国微生物遗传学研究领域若干重要进展. 遗传, 2016, 38(9): 765-790. | |
[11] |
Assen AM, Groves PJ, Etherington A, Gerber PF, Sexton M, Williamson S, Walkden-Brown SW. Field application of qPCR monitoring of infectious laryngotracheitis virus in settled chicken house dust and its role in control of a major outbreak. Avian Dis, 2022, 66(3): 299-307.
pmid: 36106910 |
[12] |
Bindari YR, Kheravii SK, Morton CL, Wu SB, Walkden- Brown SW, Gerber PF. Molecular detection of eimeria species and clostridium perfringens in poultry dust and pooled excreta of commercial broiler chicken flocks differing in productive performance. Vet parasitol, 2021, 291: 109361.
pmid: 33550163 |
[13] | Prasetyo AP, Murray JM, Kurniawan MFAK, Sales NG, Mcdevitt AD, Mariani S. Shark-dust: application of high-throughput DNA sequencing of processing residues for trade monitoring of threatened sharks and rays. Conserv Lett, 2023, 16(5): e12971. |
[14] |
Fantinato C, Fonneløp AE, Bleka Ø, Vigeland MD, Gill P. The invisible witness: air and dust as DNA evidence of human occupancy in indoor premises. Sci Rep, 2023, 13(1): 19059.
pmid: 37925517 |
[15] |
Grantham NS, Reich BJ, Pacifici K, Laber EB, Menninger HL, Henley JB, Barberán A, Leff JW, Fierer N, Dunn RR. Fungi identify the geographic origin of dust samples. PLoS One, 2015, 10(4): e0122605.
pmid: 25875229 |
[16] |
Lennartz C, Kurucar J, Coppola S, Crager J, Bobrow J, Bortolin L, Comolli J. Geographic source estimation using airborne plant environmental DNA in dust. Sci Rep, 2021, 11(1): 16238.
pmid: 34376726 |
[17] |
Haarkötter C, Saiz M, Gálvez X, Medina-Lozano MI, Álvarez JC, Lorente JA. Usefulness of microbiome for forensic geolocation: a review. Life (Basel), 2021, 11(12): 1322.
pmid: 34947853 |
[18] |
Lax S, Hampton-Marcell JT, Gibbons SM, Colares GB, Smith D, Eisen JA, Gilbert JA. Forensic analysis of the microbiome of phones and shoes. Microbiome, 2015, 3: 21.
pmid: 25969737 |
[19] | Ni WY, Sun HP. Crime scene analysis from spatio- temporal state left with the transferred-and-placed victim’s corpse. Forensic Science and Technology, 2019, 44(2): 162-165. |
倪伟勇, 孙海平. 移尸现场被害人的时空状态在现场分析中的应用. 刑事技术, 2019, 44(2): 162-165. | |
[20] |
Karadayı S. Assessment of the link between evidence and crime scene through soil bacterial and fungal microbiome: a mock case in forensic study. Forensic Sci Int, 2021, 329: 111060.
pmid: 34736047 |
[21] | Yuan YC, Wei XJ, Lin CW, Chang ZZ, Hu QM. Research on drug dissemination prediction and traceability method based on spatial distribution. China Computer & Communication, 2019, (7): 7-8, 11. |
袁毓聪, 位星剑, 林淙蔚, 常志增, 胡祁敏. 基于空间分布的毒品传播预测及溯源方法研究. 信息与电脑, 2019, (7): 7-8, 11. | |
[22] |
Zhang J, Liu WL, Simayijiang H, Hu P, Yan JW. Application of microbiome in forensics. Genomics Proteomics Bioinformatics, 2023, 21(1): 97-107.
pmid: 36031058 |
[23] |
Lema NK, Gemeda MT, Woldesemayat AA. Recent advances in metagenomic approaches, applications, and challenge. Curr Microbiol, 2023, 80(11): 347.
pmid: 37733134 |
[24] | Fatima M, Hussain S, Babar M, Aftab U, Mushtaq N, Rehman HM. Microbiome and metagenome signatures: the potential toolkit for futuristic forensic investigations. Int J Forens Sci, 2022, 7(3): 000277. |
[25] | Wang ZQ, Zhang C, Kang KL, Gong CY, Guo LL, Ji AQ, Nie SJ, Wu J, Wang L. Research progress of microbial community changes in the estimation of postmortem interval. Chin J Forensic Med, 2021, 36(5): 528-531. |
王梓齐, 张驰, 康克莱, 龚辰宇, 郭立亮, 季安全, 聂胜洁, 吴坚, 王乐. 微生物群落变化在死亡时间推断中的研究进展. 中国法医学杂志, 2021, 36(5): 528-531. | |
[26] | Yang Q, Peng JJ, Wang L, Lu Q, Mei HC, Ge WD, Zhang T, Ji AQ, Ye J, Kang KL. Optimization of dust collection and DNA extraction methods on object surfaces. Prog Biochem Biophys, 2024, 51(12): 3310-3320. |
杨琪, 彭加金, 王乐, 卢颀, 梅宏成, 戈文东, 张涛, 季安全, 叶健, 康克莱. 物体表面灰尘采集及DNA提取方法优化研究. 生物化学与生物物理进展, 2024, 51(12): 3310-3320. | |
[27] | Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. |
[28] |
Bolger AM, Marc L, Bjoern U. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.
pmid: 24695404 |
[29] |
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9(4): 357-359.
pmid: 22388286 |
[30] |
Piro VC, Dadi TH, Seiler E, Reinert K, Renard BY. Ganon: precise metagenomics classification against large and up-to-date sets of reference sequences. Bioinformatics, 2020, 36(Suppl_1): i12-i20.
pmid: 32657362 |
[31] |
O'leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, Mcveigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao YM, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li WJ, Maglott D, Masterson P, Mcgarvey KM, Murphy MR, O'neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun HZ, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, Dicuccio M, Kitts P, Murphy TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res, 2015, 44(D1): D733-D745.
pmid: 26553804 |
[32] | Mountford M. An index of similarity and its application to classification problems. Progress in Soil Zoology, 1962. |
[33] |
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol, 2011, 12(6): R60.
pmid: 21702898 |
[34] |
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST. Bayesian community-wide culture-independent microbial source tracking. Nat Methods, 2011, 8(9): 761-763.
pmid: 21765408 |
[35] |
Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I, Pe’er I, Halperin E. FEAST: fast expectation-maximization for microbial source tracking. Nat Methods, 2019, 16(7): 627-632.
pmid: 31182859 |
[36] | Ke GL, Meng Q, Finley T, Wang TF, Chen W, Ma WD, Ye QW, Liu TY. Lightgbm:a highly efficient gradient boosting decision tree. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, 2017. |
[37] | Breiman L. Random forests. Mach Learn, 2001, 45: 5-32. |
[38] | Cortes C. Support-vector networks. Mach Learn, 1995, 20: 273-297. |
[39] | 方如康. 中国的地形. 北京: 商务印书馆. 1995. |
[40] |
Allwood JS, Fierer N, Dunn RR. The future of environmental DNA in forensic science. Appl Environ Microbiol, 2020, 86(2): e01504-e01519.
pmid: 31704676 |
[41] |
Afshinnekoo E, Meydan C, Chowdhury S, Jaroudi D, Boyer C, Bernstein N, Maritz JM, Reeves D, Gandara J, Chhangawala S, Ahsanuddin S, Simmons A, Nessel T, Sundaresh B, Pereira E, Jorgensen E, Kolokotronis SO, Kirchberger N, Garcia I, Gandara D, Dhanraj S, Nawrin T, Saletore Y, Alexander N, Vijay P, Hénaff EM, Zumbo P, Walsh M, O’mullan GD, Tighe S, Dudley JT, Dunaif A, Ennis S, O’halloran E, Magalhaes TR, Boone B, Jones AL, Muth TR, Paolantonio KS, Alter E, Schadt EE, Garbarino J, Prill RJ, Carlton JM, Levy S, Mason CE. Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics. Cell Syst, 2015, 1(1): 97-97.e3.
pmid: 27135689 |
[42] |
Salo PM, Arbes SJ Jr, Sever M, Jaramillo R, Cohn RD, London SJ, Zeldin DC. Exposure to alternaria alternata in US homes is associated with asthma symptoms. J Allergy Clin Immunol, 2006, 118(4): 892-898.
pmid: 17030243 |
[43] |
Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U. High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA, 2009, 106(31): 12814-12819.
pmid: 19617562 |
[44] |
Su KF, Liang ZS, Zhang SM, Liao W, Gu JW, Guo YL, Li GY, An TC. The abundance and pathogenicity of microbes in automobile air conditioning filters across the typical cities of China and Europe. J Hazard Mater, 2024, 472: 134459.
pmid: 38691999 |
[45] | Li PF. Distribution characteristics of Bacillus-like species in China[Dissertation]. Fujian: Fujian Agricultural University, 2020. |
李鹏飞. 中国区域芽胞杆菌分布特征[学位论文]. 福建: 福建农业大学, 2020. | |
[46] | Chen ZH, Yang XN, Sun NJ, Xu L, Zheng Y, Yang YM. Species diversity and vertical distribution characteristics of metarhizium in Gaoligong mountains, southwestern China. Biodiversity Sci, 2018, 26(12): 1308-1317. |
[47] |
Walker AR, Datta S. Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data. Biology Direct, 2019, 14(1): 11.
pmid: 31340852 |
[48] | Grantham NS, Reich BJ, Laber EB, Pacifici K, Dunn RR, Fierer N, Gebert M, Allwood JS, Faith SA. Global forensic geolocation with deep neural networks. J R Stat Soc C-Appl, 2020, 69(4): 909-929. |
[49] |
Chase J, Fouquier J, Zare M, Sonderegger DL, Knight R, Kelley ST, Siegel J, Caporaso JG. Geography and location are the primary drivers of office microbiome composition. mSystems, 2016, 1(2): e00022-16.
pmid: 27822521 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: