[1] Blomen VA, Boonstra J. Cell fate determination during G1 phase progression. Cell Mol Life Sci, 2007, 64(23): 3084-3104.[2] Takahashi T, Nowakowski RS, Caviness VS. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci, 1995, 15(9): 6046-6057.[3] Takahashi T, Bhide PG, Goto T, Miyama S, Caviness VS Jr. Proliferative behavior of the murine cerebral wall in tissue culture: cell cycle kinetics and checkpoints. Exp Neurol, 1999, 156(2): 407-417.[4] Takahashi T, Nowakowski RS, Caviness VS Jr. Cell cycle parameters and patterns of nuclear movement in the neo-cortical proliferative zone of the fetal mouse. J Neurosci, 1993, 13(2): 820-833.[5] Lange C, Calegari F. Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle, 2010, 9(10): 1893-1900.[6] Lange C, Huttner WB, Calegari F. Cdk4/CyclinD1 over-expression in neural stem cells shortens G1, delays neuro-genesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell, 2009, 5(3): 320-331.[7] Pilaz LJ, Patti D, Marcy G, Ollier E, Pfister S, Douglas RJ, Betizeau M, Gautier E, Cortay V, Doerflinger N, Kennedy H, Dehay C. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc Natl Acad Sci USA, 2009, 106(51): 21924-21929.[8] Das D, Lanner F, Main H, Andersson ER, Bergmann O, Sahlgren C, Heldring N, Hermanson O, Hansson EM, Lendahl U. Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells. Dev Biol, 2010, 348(2): 153-166.[9] Britz O, Mattar P, Nguyen L, Langevin LM, Zimmer C, Alam S, Guillemot F, Schuurmans C. A role for proneural genes in the maturation of cortical progenitor cells. Cereb Cortex, 2006, 16(Suppl.1): 138-151.[10] Koutmani Y, Hurel C, Patsavoudi E, Hack M, Gotz M, Thomaidou D, Matsas R. BM88 is an early marker of pro-liferating precursor cells that will differentiate into the neuronal lineage. Eur J Neurosci, 2004, 20(10): 2509-2523.[11] Tsai JW, Lian WN, Kemal S, Kriegstein AR, Vallee RB. Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci, 2010, 13(12): 1463-1471.[12] Komada M, Soriano P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev, 1999, 13(11): 1475-1485.[13] Farkas LM, Huttner WB. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol, 2008, 20(6): 707-715.[14] Nadarajah B, Alifragis P, Wong ROL, Parnavelas JG. Neuronal migration in the developing cerebral cortex: ob-servations based on real-time imaging. Cereb Cortex, 2003, 13(6): 607-611.[15] Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature, 2001, 409(6821): 714-720.[16] Pinto L, Götz M. Radial glial cell heterogeneity-the source of diverse progeny in the CNS. Prog Neurobiol, 2007, 83(1): 2-23.[17] Zhao CM, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell, 2008, 132(4): 645-660.[18] Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA, 2004, 101(9): 3196-201.[19] Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol, 2008, 508(1): 28-44.[20] Takahashi T, Nowakowski RS, Caviness VS Jr. BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. J Neurocytol, 1992, 21(3): 185-197.[21] Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol, 1989, 18(3): 311-318.[22] Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 2004, 7(2): 136-144.[23] Yoshikawa K. Cell cycle regulators in neural stem cells and postmitotic neurons. Neurosci Res, 2000, 37(1): 1-14.[24] Fishell G, Kriegstein AR. Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol, 2003, 13(1): 34-41.[25] Miyata T, kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development, 2004, 131(13): 3133-3145.[26] Israels ED, Israels LG. The cell cycle. Stem Cells, 2001, 19(1): 88-91.[27] Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron, 2005, 47(3): 353-364.[28] Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci, 2003, 116(24): 4947-4955.[29] Calegari F, Haubensak W, Haffner C, Huttner WB. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci, 2005, 25(28): 6533-6538.[30] Frouin I, Montecucco A, Biamonti G, Hübscher U, Spadari S, Maga G. Cell cycle-dependent dynamic association of cyclin/Cdk complexes with human DNA replication proteins. EMBO J, 2002, 21(10): 2485-2495.[31] Englund C, Fink A, Lau C, Pham D, Daza RAM, Bulfone A, Kowalczyk T, Hevner RF. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate pro-genitor cells, and postmitotic neurons in developing neo-cortex. J Neurosci, 2005, 25(1): 247-251.[32] Mitsuhashi T, Aoki Y, Eksioglu YZ, Takahashi T, Bhide PG, Reeves SA, Caviness VS Jr. Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system pro-genitor cells. Proc Natl Acad Sci USA, 2001, 98(11): 6435-6440.[33] Buchman JJ, Tsai LH. Putting a notch in our understanding of nuclear migration. Cell, 2008, 134(6): 912-914.[34] Tokunaga A, Kohyama J, Yoshida T, Nakao K, Sawamoto K, Okano H. Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J Neurochem, 2004, 90(1): 142-154.[35] Cisneros E, Latasa MJ, García-Flores M, Frade JM. Insta-bility of Notch1 and Delta1 mRNAs and reduced Notch activity in vertebrate neuroepithelial cells undergoing S-phase. Mol Cell Neurosci, 2008, 37(4): 820-831.[36] Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ, Miele L, Cardoso AA, Classon M, Carlesso N. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27Kip1 degradation. J Exp Med, 2005, 202(1): 157-168.[37] Politis PK, Thomaidou D, Matsas R. Coordination of cell cycle exit and differentiation of neuronal progenitors. Cell Cycle, 2008, 7(6): 691-697.[38] Politis PK, Makri G, Thomaidou D, Geissen M, Rohrer H, Matsas R. BM88/CEND1 coordinates cell cycle exit and differentiation of neuronal precursors. Proc Natl Acad Sci USA, 2007, 104(45): 17861-17866.[39] Georgopoulou N, Hurel C, Politis PK, Gaitanou M, Matsas R, Thomaidou D. BM88 is a dual function molecule inducing cell cycle exit and neuronal differentiation of neuroblastoma cells via cyclin D1 down-regulation and retinoblastoma protein hypophosphorylation. J Biol Chem, 2006, 281(44): 33606-33620.[40] Robertson AM, Allan VJ. Brefeldin A-dependent membrane tubule formation reconstituted in vitro is driven by a cell cycle-regulated microtubule motor. Mol Biol Cell, 2000, 11(3): 941-955.[41] Kosodo Y, Suetsugu T, Suda M, Mimori-Kiyosue Y, Toida K, Baba SA, Kimura A, Matsuzaki F. Regulation of in-terkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO J, 2011, 30(9): 1690-1704.[42] Gambello MJ, Darling DL, Yingling J, Tanaka T, Gleeson JG, Wynshaw-Beris A. Multiple dose-dependent effects of Lis1 on cerebral cortical development. J Neurosci, 2003, 23(5): 1719-1729.[43] Tsai JW, Chen Y, Kriegstein AR, Vallee RB. LIS1 RNA interference blocks neural stem cell division, morpho-genesis, and motility at multiple stages. J Cell Biol, 2005, 170(6): 935-945.[44] Xie ZG, Moy LY, Sanada K, Zhou Y, Buchman JJ, Tsai LH. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron, 2007, 56(1): 79-93.[45] Schenk J, Wilsch-Bräuninger M, Calegari F, Huttner WB. Myosin II is required for interkinetic nuclear migration of neural progenitors. Proc Natl Acad Sci USA, 2009, 106(38): 16487-16492.[46] Fragel-Madeira L, Meletti T, Mariante RM, Monteiro RQ, Einicker-Lamas M, Bernardo RR, Lopes AH, Linden R. Platelet Activating Factor blocks interkinetic nuclear migration in retinal progenitors through an arrest of the cell cycle at the S/G2 transition. PLoS One, 2011, 6(1): e16058.[47] Guerrier S, Polleux F. The ups and downs of neural pro-genitors: Cep120 and TACCs control interkinetic nuclear migration. Neuron, 2007, 56(1): 1-3.[48] Quintyne NJ, Schroer TA. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J Cell Biol, 2002, 159(2): 245-254.[49] Del Bene F, Wehman AM, Link BA, Baier H. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell, 2008, 134(6): 1055-1065.[50] Salomoni P, Calegari F. Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol, 2010, 20(5): 233-243.[51] Caviness VS Jr, Nowakowshi RS, Bhide PG. Neocortical neurogenesis: morphogenetic gradients and beyond. Trends Neurosci, 2009, 32(8): 443-450.[52] Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci, 2008, 11(11): 1247-1251.[53] McConnell SK. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron, 1995, 15(4): 761-768.[54] Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development. BioEssays, 2000, 22(1): 64-71.[55] 林德晨, 史志周, 薛丽燕, 陈微, 徐昕, 韩亚玲, 吕宁, 王明荣. 细胞周期相关蛋白cyclin D1、p53和p21WAF1/Cip1在食管鳞癌中的表达改变及其病理学意义. 遗传, 2010, 32(5): 455-460.[56] O'Keeffe GC, Barker RA, Caldwell MA. Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle, 2009, 8(18): 2888-2894.[57] Herrup k. Reimagining alzheimer’s disease-an age-based hypothesis. J Neurosci, 2010, 30(50): 16755-16762. |