[1] Solnica-Krezel L. Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol, 2005, 15(6): R213-R228.[2] Warga RM, Kimmel CB. Cell movements during epiboly and gastrulation in zebrafish. Development, 1990, 108(4): 569-580.[3] Rohde LA, Heisenberg CP. Zebrafish gastrulation: cell movements, signals, and mechanisms. Int Rev Cy-tol, 2007, 261: 159-192.[4] Mizoguchi T, Verkade H, Heath JK, Kuroiwa A, Kikuchi Y. Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development, 2008, 135(15): 2521-2529.[5] Kai M, Heisenberg CP, Tada M. Sphingosine-1-phosphate receptors regulate individual cell behaviours underlying the directed migration of prechordal plate progenitor cells during zebrafish gastrulation. Development, 2008, 135(18): 3043-3051.[6] Sepich DS, Usmani M, Pawlicki S, Solnica-Krezel L. Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements. Development, 2011, 138(3): 543-552.[7] Barone V, Heisenberg CP. Cell adhesion in embryo morphogenesis. Curr Opin Cell Biol, 2012, 24(1): 148-153.[8] Diz-Muñoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ, Paluch E, Heisenberg CP. Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol, 2010, 8(11): e1000544.[9] Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dynam, 1995, 203(3): 253-310.[10] Kane DA, Warga RM, Kimmel CB. Mitotic domains in the early embryo of the zebrafish. Nature, 1992, 360(6406): 735-737.[11] Fink RD, Cooper MS. Apical membrane turnover is accelerated near cell-cell contacts in an embryonic epithelium. Dev Biol, 1996, 174(2): 180-189.[12] Wilson ET, Cretekos CJ, Helde KA. Cell mixing during early epiboly in the zebrafish embryo. Dev Genet, 1995, 17(1): 6-15.[13] Köppen M, Fernández BG, Carvalho L, Jacinto A, Heisenberg CP. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development, 2006, 133(14): 2671-2681.[14] Cheng JC, Miller AL, Webb SE. Organization and function of microfilaments during late epiboly in zebrafish embryos. Dev Dynam, 2004, 231(2): 313-323.[15] Zhang T, Yao SH, Wang P, Yin CR, Xiao C, Qian ML, Liu DH, Zheng LM, Meng WT, Zhu HY, Liu J, Xu H, Mo XM. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer. J Biol Chem, 2011, 286(11): 9514-9525.[16] Carvalho L, Stühmer J, Bois JS, Kalaidzidis Y, Lecaudey V, Heisenberg CP. Control of convergent yolk syncytial layer nuclear movement in zebrafish. Development, 2009, 136(8): 1305-1315.[17] Siddiqui M, Sheikh H, Tran C, Bruce AEE. The tight junction component Claudin E is required for zebrafish epiboly. Dev Dynam, 2010, 239(2): 715-722.[18] Solnica-Krezel L, Driever W. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development, 1994, 120(9): 2443-2455.[19] Kane DA, McFarland KN, Warga RM. Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development, 2005, 132(5): 1105-1116.[20] Montero JA, Carvalho L, Wilsch-Bräuninger M, Kilian B, Mustafa C, Heisenberg CP. Shield formation at the onset of zebrafish gastrulation. Development, 2005, 132(6): 1187-1198.[21] Carmany-Rampey A, Schier AF. Single-cell internalization during zebrafish gastrulation. Curr Biol, 2001, 11(16): 1261-1265.[22] Nakaya Y, Sukowati EW, Wu YP, Sheng GJ. RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol, 2008, 10(7): 765-775.[23] Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature, 2004, 429(6989): 298-302.[24] Blanco MJ, Barrallo-Gimeno A, Acloque H, Reyes AE, Tada M, Allende ML, Mayor R, Nieto MA. Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development, 2007, 134(22): 4073-4081.[25] Ulrich F, Concha ML, Heid PJ, Voss E, Witzel S, Roehl H, Tada M, Wilson SW, Adams RJ, Soll DR, Heisenberg CP. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development, 2003, 130(22): 5375-5384.[26] Ulrich F, Krieg M, Schötz EM, Link V, Castanon I, Schnabel V, Taubenberger A, Mueller D, Puech PH, Heisenberg CP. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell, 2005, 9(4): 555-564.[27] Merlot S, Firtel RA. Leading the way: Directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J Cell Sci, 2003, 116(Pt 17): 3471-3478.[28] Montero JA, Kilian B, Chan J, Bayliss PE, Heisenberg CP. Phosphoinositide 3-kinase is required for process outgrowth and cell polarization of gastrulating mesendodermal cells. Curr Biol, 2003, 13(15): 1279-1289.[29] Yamashita S, Miyagi C, Carmany-Rampey A, Shimizu T, Fujii R, Schier AF, Hirano T. Stat3 controls cell movements during zebrafish gastrulation. Dev Cell, 2002, 2(3): 363-375.[30] Miyagi C, Yamashita S, Ohba Y, Yoshizaki H, Matsuda M, Hirano T. STAT3 noncell-autonomously controls planar cell polarity during zebrafish convergence and extension. J Cell Biol, 2004, 166(7): 975-981.[31] Kimmel CB, Warga RM, Schilling TF. Origin and organization of the zebrafish fate map. Development, 1990, 108(4): 581-594.[32] Myers DC, Sepich DS, Solnica-Krezel L. Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev Biol, 2002, 243(1): 81-98.[33] Liu JX, Hu B, Wang Y, Gui JF, Xiao WH. Zebrafish eaf1 and eaf2/u19 mediate effective convergence and extension movements through the maintenance of wnt11 and wnt5 expression. J Biol Chem, 2009, 284(24): 16679-16692.[34] Carreira-Barbosa F, Kajita M, Morel V, Wada H, Okamoto H, Martinez Arias A, Fujita Y, Wilson SW, Tada M. Flamingo regulates epiboly and convergence/extension movements through cell cohesive and signalling functions during zebrafish gastrulation. Development, 2009, 136(3): 383-392.[35] Vervenne HBVK, Crombez KRMO, Lambaerts K, Carvalho L, Köppen M, Heisenberg CP, van de Ven WJM, Petit MMR. Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Dev Biol, 2008, 320(1): 267-277.[36] Lin SD, Baye LM, Westfall TA, Slusarski DC. Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement. J Cell Biol, 2010, 190(2): 263-278.[37] Nair S, Schilling TF. Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science, 2008, 322(5898): 89-92.[38] Rauch GJ, Hammerschmidt M, Blader P, Schauerte HE, Strahle U, Ingham PW, McMahon AP, Haffter P. Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol, 1997, 62: 227-234.[39] Formstone CJ, Mason I. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway. Dev Biol, 2005, 282(2): 320-335.[40] Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolan PM, Steel KP, Brown SD, Gray IC, Murdoch JN. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol, 2003, 13(13): 1129-1133.[41] Arboleda-Estudillo Y, Krieg M, Stühmer J, Licata NA, Muller DJ, Heisenberg CP. Movement directionality in collective migration of germ layer progenitors. Curr Biol, 2010, 20(2): 161-169.[42] Yao SH, Xie LF, Qian ML, Yang HS, Zhou L, Zhou Q, Yan F, Gou LT, Wei YQ, Zhao X, Mo XM. Pnas4 is a novel regulator for convergence and extension during vertebrate gastrulation. FEBS Lett, 2008, 582(15): 2325-2332.[43] Yao SH, Qian ML, Deng SY, Xie LF, Yang HS, Xiao C, Zhang T, Xu H, Zhao X, Wei YQ, Mo XM. Kzp controls canonical Wnt8 signaling to modulate dorsoventral patterning during zebrafish gastrulation. J Biol Chem, 2010, 285(53): 42086-42096.[44] D'Amico LA, Cooper MS. Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev Dynam, 2001, 222(4): 611-624.[45] Davidson LA, Marsden M, Keller R, Desimone DW. Integrin α5β1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol, 2006, 16(9): 833-844.[46] Marsden M, DeSimone DW. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development, 2001, 128(18): 3635-3647.[47] Marsden M, DeSimone DW. Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr Biol, 2003, 13(14): 1182-1191. |