[1] Kimura M. Evolutionary rate at the molecular level. Nature, 1968, 217(5129): 624-626.[2] King JL, Jukes TH. Non-Darwinian evolution. Science, 1969, 164(3881): 788-798.[3] Zuckerkandl E, Pauling L. Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B, eds. Horizons in Biochemistry. New York: Academic Press, 1962: 189-225.[4] Margoliash E. Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA, 1963, 50(4): 672-679.[5] Kumar S. Molecular clocks: four decades of evolution. Nat Rev Genet, 2005, 6(8): 654-662.[6] Kimura M, Ohta T. On the rate of molecular evolution. J Mol Evol, 1971, 1(1): 1-17.[7] Ayala FJ. Molecular clock mirages. BioEssays, 1999, 21(1): 71-75.[8] Pulquério MJ, Nichols RA. Dates from the molecular clock: how wrong can we be? Trends Ecol Evol, 2007, 22(4): 180-184.[9] Huang S. The genetic equidistance result of molecular evolution is independent of mutation rates. J Comp Sci Syst Biol, 2008, 1(12): 92-102.[10] Huang S. Inverse relationship between genetic diversity and epigenetic complexity. Preprint available at Nature Precedings, 2009, doi: 10.1038/npre.2009.1751.2.[11] Huang S. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers. Sci China Life Sci, 2012, 55(8): 709-725.[12] Laird CD, McConaughy BL, McCarthy BJ. Rate of fixation of nucleotide substitutions in evolution. Nature, 1969, 224(5215): 149-154.[13] Jukes TH, Holmquist R. Evolutionary clock: nonconstancy of rate in different species. Science, 1972, 177(4048): 530-532.[14] Goodman M, Moore GW, Bamabas J, Matsuda G. The phylogeny of human globin genes investigated by the maximum parsimony method. J Mol Evol, 1974, 3(1): 1-48.[15] Langley CH, Fitch WM. An examination of the constancy of the rate of molecular evolution. J Mol Evol, 1974, 3(3): 161-177.[16] Li WH. Molecular evolution. Sunderland: Sinauer Associates. 1997.[17] Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press, 2000.[18] Avise JC. Molecular markers, natural history and evolution. New York: Springer, 1994.[19] Gago S, Elena SF, Flores R, Sanjuán R. Extremely high mutation rate of a hammerhead viroid. Science, 2009, 323(5919): 1308.[20] Huang S. Molecular evidence for the hadrosaur B. canadensis as an outgroup to a clade containing the dinosaur T. rex and birds. Riv Biol, 2009, 102(1): 20-22.[21] Huang S. Ancient fossil specimens of extinct species are genetically more distant to an outgroup than extant sister species are. Riv Biol, 2008, 101(1): 93-108.[22] Yuan DJ, Zhu ZB, Tan XH, Liang J, Zeng C, Zhang JG, Chen J, Ma L, Dogan A, Brockmann G, Goldmann O, Medina E, Rice AD, Moyer RW, Man X, Yi K, Li YK, Lu Q, Huang YM, Wang DP, Yu J, Guo H, Xia K, Huang S. Minor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selection. arXiv: 1209.2911(abstract # 2251). In: Presented at the 62nd Annual Meeting of the American Society of Human Genetics. San Francisco, California, 2012.[23] Bromham L, Penny D. The modern molecular clock. Nat Rev Genet, 2003, 4(3): 216-224.[24] Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, Andofatto P, Przeworski M. Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol, 2012, 10(9): e1001388.[25] Gould SJ, Eldredge N. Punctuated equilibrium comes of age. Nature, 1993, 366(6452): 223-227.[26] Goldschmidt R. The material basis of evolution. New Haven: Yale University Press, 1940.[27] Lovtrup S. Darwinism: the refutation of a myth. New York: Springer, 1987.[28] Jablonka E, Lamb MJ. Evolution in four d |