[1] Berger SL. Histone modifications in transcriptional regu-lation. Curr Opin Genet Dev, 2002, 12(2): 142–148.
[2] Rodriguez-Navarro S. Insights into SAGA function during gene expression. EMBO Rep, 2009, 10(8): 843–850.
[3] Koutelou E, Hirsch CL, Dent SY. Multiple faces of the SAGA complex. Curr Opin Cell Biol, 2010, 22(3): 374–382.
[4] Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belot-serkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL. Functional organization of the yeast SAGA complex: distinct components involved in structural integ-rity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol, 1999, 19(1): 86–98.
[5] Baker SP, Grant PA. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene, 2007, 26(37): 5329–5340.
[6] Helmlinger D, Marguerat S, Villén J, Gygi SP, Bahler J, Winston F. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev, 2008, 22(22): 3184–3195.
[7] Mcmahon SB, Wood MA, Cole MD. The essential cofac-tor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol, 2000, 20(2): 556–562.
[8] Roberts SM, Winston F. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cere-visiae. Mol Cell Biol, 1996, 16(6): 3206–3213.
[9] Nagy Z, Riss A, Romier C, le Guezennec X, Dongre AR, Orpinell M, Han J H, Stunnenberg H, Tora L. The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes. Mol Cell Biol, 2009, 29(6): 1649–1660.
[10] Aramburu J, Heitman J, Crabtree GR. Calcineurin: a cen-tral controller of signalling in eukaryotes. EMBO Rep, 2004, 5(4): 343–348.
[11] Klee CB, Draetta GF, Hubbard MJ. Calcineurin. In: Meister A, ed. advances in enzymology and related areas of molecular biology (Volume 61). New York: John Wiley & Sons, Inc., 2006: 149–200.
[12] Lu Y, Sugiura R, Yada T, Cheng H, Sio SO, Shuntoh H, Kuno T. Calcineurin is implicated in the regulation of the septation initiation network in fission yeast. Genes Cells, 2002, 7(10): 1009–1019.
[13] Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev, 2000, 80(4): 1483–1521.
[14] Yoshida T, Toda T, Yanagida M. A calcineurin-like gene ppb1+ in fission yeast: mutant defects in cytokinesis, cell polarity, mating and spindle pole body positioning. J Cell Sci, 1994, 107(7): 1725–1735.
[15] Sugiura R, Toda T, Shuntoh H, Yanagida M, Kuno T. pmp1+, a suppressor of calcineurin deficiency, encodes a novel MAP kinase phosphatase in fission yeast. EMBO J, 1998, 17(1): 140–148.
[16] Lucas JH, Emery DG, Rosenberg LJ. Physical injury of neurons: Important roles for sodium and chloride ions. Neuronscientist, 1997, 3(2): 89–101.
[17] Hudson AJ, Ebers GC, Bulman DE. The skeletal muscle sodium and chloride channel diseases. Brain, 1995, 118(Part 2): 547–563.
[18] Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Ta-kahashi N. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol, 2006, 209(1): 21–29.
[19] Xiong D, Heyman NS, Airey J, Zhang M, Singer CA, Rawat S, Ye L, Evans R, Burkin DJ, Tian H, Mccloskey DT, Valencik M, Britton FC, Duan D, Hume JR. Car-diac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice. J Mol Cell Cardiol, 2010, 48(1): 211–219.
[20] 赖仲方. 心肌细胞内氯离子浓度与缺血再灌注期间心律失常的关联. 中国医学科学院学报, 2002, 24(2): 190– 196.
[21] 陈涛, 雷兰萍, 周和平, 金振晓. 氯通道阻滞剂对大鼠心肌缺血再灌注损伤致心肌细胞凋亡的作用. 中国体外循环杂志, 2011, 9(2): 85–88.
[22] Forsburg SL, Rhind N. Basic methods for fission yeast. Yeast, 2006, 23(3): 173–183.
[23] Bd Biosciences Clontech. Matchmaker™ GAL4 Two-Hybrid System 3 & Libraries User Manual PT3247–1(PR742219). US: Clontech Laboratories, Inc., 2007.
[24] Bd Biosciences Clontech. Matchmaker™ Gold Yeast Two-Hybrid System User Manual PT4084–1 (PR033493). US: Clontech Laboratories, Inc., 2010.
[25] Shen L, Hu J, Lu H, Wu M, Qin W, Wan D, Li YY, Gu J. The apoptosis-associated protein BNIPL interacts with two cell proliferation-related proteins, MIF and GFER. FEBS Lett, 2003, 540(1-3): 86–90.
[26] Gregan J, Rabitsch PK, Rumpf C, Novatchkova M, Schleiffer A, Nasmyth K. High-throughput knockout screen in fission yeast. Nat Protoc, 2006, 1(5): 2457– 2464.
[27] Sugiura R, Sio SO, Shuntoh H, Kuno T. Calcineurin phosphatase in signal transduction: lessons from fission yeast. Genes Cells, 2002, 7(7): 619–627.
[28] Helmlinger D, Marguerat S, Villén J, Swaney DL, Gygi SP, Bähler J, Winston F. Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO J, 2011, 30(14): 2843–2852.
[29] Lee TI, Causton HC, Holstege F, Shen WC, Hannett N, Jennings EG, Winston F, Green NR, Young RA. Redun-dant roles for the TFIID and SAGA complexes in global transcription. Nature, 2000, 405(6787): 701–704.
[30] Shibasaki F, Mckeon F. Calcineurin functions in Ca(2+)- activated cell death in mammalian cells. J Cell Biol, 1995, 131(3): 735–743.
[31] Hirayama S, Sugiura R, Lu YB, Maeda T, Kawagishi K, Yokoyama M, Tohda H, Giga-Hama Y, Shuntoh H, Kuno T. Zinc finger protein Prz1 regulates Ca2+ but not Cl- ho-meostasis in fission yeast. J Biol Chem, 2003, 278(20): 18078–18084.
[32] Shibasaki F, Price ER, Milan D, Mckeon F. Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature, 1996, 382(6589): 370–373.
[33] Ridley PD, Curtis MJ. Anion manipulation: a new antiar-rhythmic approach. Action of substitution of chloride with nitrate on ischemia- and reperfusion- induced ventricular fibrillation and contractile function. Circ Res, 1992, 70(4): 617–632.
[34] Lai ZF, Liu J, Nishi K. Effects of stilbene derivatives SITS and DIDS on development of intracellular acidosis during ischemia in isolated guinea pig ventricular papil-lary muscle in vitro. Jpn J Pharmacol, 1996, 72(2): 161–174.
[35] Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell, 2001, 105(7): 863–875.
[36] Dibrov P, Smith JJ, Young PG, Fliegel L. Identification and localization of the sod2 gene product in fission yeast. FEBS Lett, 1997, 405(1): 119–124. |