[1] Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet, 2009, 10(6): 392–404.
[2] Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered, 2003, 56(1–3): 73–82.
[3] Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet, 2005, 37(4): 413–417.
[4] Briggs FBS, Ramsay PP, Madden E, Norris JM, Holers VM, Mikuls TR, Sokka T, Seldin MF, Gregersen PK, Criswell LA, Barcellos LF. Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis. Genes Immun, 2010, 11(3): 199–208.
[5] Epstein MP, Satten GA. Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet, 2003, 73(6): 1316–1329.
[6] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81(3): 559–575.
[7] Wu XS, Dong H, Luo L, Zhu Y, Peng G, Reveille JD, Xiong MM. A novel statistic for genome-wide interaction analysis. PLoS Genet, 2010, 6(9): e1001131.
[8] Ueki M, Cordell HJ. Improved statistics for genome-wide interaction analysis. PLoS Genet, 2012, 8(4): e1002625.
[9] Rao SQ, Yuan MQ, Zuo XY, Su WY, Zhang F, Huang K, Lin MH, Ding YL. A novel evolution-based method for detecting gene-gene interactions. PLoS ONE, 2011, 6(10): e26435.
[10] Breiman L. Random forests. Machine Learning, 2001, 45(1): 5–32.
[11] Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP, Van Eerdewegh P. Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol, 2005, 28(2): 171–182.
[12] Cook N, Zee R, Ridker P. Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med, 2004, 23(9): 1439–1453.
[13] Lunetta K, Hayward L, Segal J, Van Eerdewegh P. Screening large-scale association study data exploiting interactions using random forests. BMC Genet, 2004, 5: 32.
[14] Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet, 2001, 69(1): 138–147.
[15] Chung YJ, Lee SY, Elston RC, Park T. Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions. Bioinformatics, 2007, 23(1): 71–76.
[16] Collins RL, Hu T, Wejse C, Sirugo G, Williams SM, Moore JH. Multifactor dimensionality reduction reveals a three- locus epistatic interaction associated with susceptibility to pulmonary tuberculosis. BioData Min, 2013, 6(1): 4.
[17] Nunkesser R, Bernholt T, Schwender H, Ickstadt K, Wegener I. Detecting high-order interactions of single nucleotide polymorphisms using genetic programming. Bioinformatics, 2007, 23(24): 3280–3288.
[18] Liu KH, Xu CG. A genetic programming-based approach to the classification of multiclass microarray datasets. Bioinformatics, 2009, 25(3): 331–337.
[19] Ritchie MD, White BC, Parker JS, Hahn LW, Moore JH. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics, 2003, 4(1): 28.
[20] Chen SH, Sun JL, Dimitrov L, Turner AR, Adams TS, Meyers DA, Chang BL, Zheng SL, Gronberg H, Xu JF, Hsu FC. A support vector machine approach for detecting gene-gene interaction. Genet Epidemiol, 2008, 32(2): 152– 167.
[21] McKinney BA, Reif D, Ritchie M, Moore JH. Machine learning for detecting gene-gene interactions. Appl Bioinformatics, 2006, 5(2): 77 |