[1] | Chandra M, Miriyala S, Panchatcharam M. PPARγ and its role in cardiovascular diseases. PPAR Res, 2017, 2017: 6404638. | [2] | Zhang Y, Li H. Three important transcription factors related to lipogenesis and adipogenesis in mam mal. J Northeast Agric Univ, 2010, 17(3): 62-75. | [3] | Wang L, Na W, Wang YX, Wang YB, Wang N, Wang QG, Li YM, Li H. Characterization of chicken PPARγ expression and its impact on adipocyte proliferation and differentiation. Hereditas (Beijing), 2012, 34(5): 454-464. | [3] | 王丽, 那威, 王宇祥, 王彦博, 王宁, 王启贵, 李玉茂, 李辉. 鸡PPARγ基因的表达特性及其对脂肪细胞增殖分化的影响. 遗传, 2012, 34(5): 454-464. | [4] | Ding N, Gao Y, Wang N, Li H. Functional analysis of the chicken PPARγ gene 5'-flanking region and C/EBPα- mediated gene regulation. Comp Biochem Physiol B Biochem Mol Biol, 2011, 158(4): 297-303. | [5] | Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol, 2000, 16: 145-171. | [6] | Rosen ED, Spiegelman BM. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem, 2001, 276(41): 37731-37734. | [7] | Lee JE, Ge K. Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell Biosci, 2014, 4: 29. | [8] | Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM. PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell, 1999, 4(4): 585-595. | [9] | Vella S, Conaldi PG, Florio T, Pagano A. PPAR gamma in neuroblastoma: the translational perspectives of hypoglycemic drugs. PPAR Res, 2016, 2016: 3038164. | [10] | Choi SS, Park JY, Choi JH. Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB Rep, 2014, 47(11): 599-608. | [11] | Liu HJ, Liao HH, Yang Z, Tang QZ. Peroxisome proliferator-activated receptor-γ is critical to cardiac Fibrosis. PPAR Res, 2016, 2016: 2198645. | [12] | Lee WS, Kim J. Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. PPAR Res, 2015, 2015: 271983. | [13] | Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J. The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem, 1997, 272(30): 18779-18789. | [14] | Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, Reddy JK. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA, 1995, 92(17): 7921-7925. | [15] | Takenaka Y, Inoue I, Nakano T, Shinoda Y, Ikeda M, Awata T, Katayama S. A novel splicing variant of peroxisome proliferator-activated receptor-γ ( Pparγ1sv) cooperatively regulates adipocyte differentiation with Pparγ2. PLoS One, 2013, 8(6): e65583. | [16] | Aprile M, Ambrosio MR, D'Esposito V, Beguinot F, Formisano P, Costa V, Ciccodicola A PPARG in human adipogenesis: differential contribution of canonical transcripts and dominant negative isoforms. PPAR Res, 2014, 2014: 537865. | [17] | Polvani S, Tarocchi M, Tempesti S, Bencini L, Galli A. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol, 2016, 22(8): 2441-2459. | [18] | Duan K, Sun YN, Zhang XF, Zhang TM, Zhang WJ, Zhang JY, Wang GH, Wang SZ, Leng L, Li H, Wang N. Identification and characterization of transcript variants of chicken peroxisome proliferator-activated receptor gamma. Poult Sci, 2015, 94(10): 2516-2527. | [19] | Monajemi H, Zhang L, Li G, Jeninga EH, Cao HN, Maas M, Brouwer CB, Kalkhoven E, Stroes E, Hegele RA, Leff T. Familial partial lipodystrophy phenotype resulting from a single-base mutation I n deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-γ. J Clin Endoc rinol Metab, 2007, 92(5): 1606-1612. | [20] | Raj R, Bhatti JS, Bhadada SK, Ramteke PW. Association of polymorphisms of peroxisome proliferator activated receptors in early and late onset of type 2 diabetes mellitus. Diabetes Metab Syndr, 2017, doi: 10.1016/j.dsx.2017.03. 004. | [21] | Dong C, Zhou H, Shen C, Yu LG, Ding Y, Zhang YH, Guo ZR. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome. World J Diabetes, 2015, 6(4): 654-661. | [22] | Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Eng J Med, 1998, 339(14): 953-959. | [23] | Astapova O, Leff T. PPARγ mutations, lipodystrophy and diabetes. Horm Mol Biol Clin Investig, 2014, 20(2): 63-70. | [24] | Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A, Rajanayagam O, Semple R, Luan JA, Bath L, Zalin A, Labib M, Kumar S, Simpson H, Blom D, Marais D, Schwabe J, Barroso I, Trembath R, Wareham N, Nagy L, Gurnell M, O'Rahilly S, Chatterjee K. Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance. Cell Metab, 2006, 4(4): 303-311. | [25] | Barroso I, Gurnell M, Crowley VEF, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TDM, Lewis H, Schafer AJ, Chatterjee VKK, O'Rahilly S. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature, 1999, 402(6764): 880-883. | [26] | Majithia AR, Flannick J, Shahinian P, Guo M, Bray MA, Fontanillas P, Gabriel SB, GoT2D consortium, NHGRI JHS/FHS allelic spectrum project, SIGMA T2D consortium, T2D-GENES consortium, Rosen ED, Altshuler D. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci USA, 2014, 111(36): 13127-13132. | [27] | Li CY, Li H. The study of SNPs in chicken PPARγ gene and their associations with fatness trait. Progress in animal genetic breeding in China Progress——The thirteenth national symposium on animal genetics breeding in China. Harbin: animal husbandry and veterinary society in China. 2005. | [27] | 李春雨, 李辉. 鸡PPARγ基因SNPs与脂肪性状相关的研究. 见:中国动物遗传育种研究进展——第十三次全国动物遗传育种学术讨论会论文集. 哈尔滨: 中国畜牧兽医学会, 2005. | [28] | Claussnitzer M, Dankel SN, Klocke B, Grallert H, Glunk V, Berulava T, Lee H, Oskolkov N, Fadista J, Ehlers K, Wahl S, Hoffmann C, Qian K, R?nn T, Riess H, Müller- Nurasyid M, Bretschneider N, Schroeder T, Skurk T, Horsthemke B, DIAGRAM+Consortium, Spieler D, Klingenspor M, Seifert M, Kern MJ, Mejhert N, Dahlman I, Hansson O, Hauck SM, Blüher M, Arner P, Groop L, Illig T, Suhre K, Hsu YH, Mellgren G, Hauner H, Laumen H. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell, 2014, 156(1-2): 343-358. | [29] | Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, Helbecque N, Auwerx J, Amouyel P. A functional polymorphism in a STAT5B site of the human PPARγ3 gene promoter affects height and lipid metabolism in a French population. Arterioscler Thromb Vasc Biol, 2003, 23(2): 289-294. | [30] | Wang H, Xiong K, Sun W, Fu Y, Jiang Z, Yu D, Liu H, Chen J. Two completely linked polymorphisms in the PPARG transcriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsimuscle of Erhualian pigs. Anim Genet, 2013, 44(4): 458-462. | [31] | Han Q, Wang SZ, Hu G, Li H. Correlation between peroxisome proliferator-activated receptor g 5'-flanking region haplotypes with the growth and body composition traits in chickens. Sci Agric Sin, 2009, 42(10): 3647-3654. | [31] | 韩青, 王守志, 户国, 李辉. PPARγ基因5′侧翼区单倍型与鸡生长和体组成性状的相关研究. 中国农业科学, 2009, 42(10): 3647-3654. | [32] | Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev, 2002, 16(1): 22-26. | [33] | Madsen MS, Siersb?k R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol, 2014, 34(6): 939-954. | [34] | Villanueva CJ, Waki H, Godio C, Nielsen R, Chou WL, Vargas L, Wroblewski K, Schmedt C, Chao LC, Boyadjian R, Mandrup S, Hevener A, Saez E, Tontoniz P. TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab, 2011, 13(4): 413-427. | [35] | Li MS, Cai DH. Study on adipocyte differentiation molecular mechanisms. J Graduates Sun Yat-Sen Univ (Nat Sci, Med), 2013, 34(1): 13-20. | [35] | 李名森, 蔡东宏. 白色脂肪细胞分化分子机制研究进展. 中山大学研究生学刊(自然科学、医学版), 2013, 34(1): 13-20. | [36] | Jimenez MA, ?kerblad P, Sigvardsson M, Rosen ED. Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol Cell Biol, 2007, 27(2): 743-757. | [37] | Fajas L, Landsberg RL, Huss-Garcia Y, Sardet C, Lees JA, Auwerx J. E2Fs regulate adipocyte differentiation. Dev Cell, 2002, 3(1): 39-49. | [38] | Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J. Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol, 1999, 19(8): 5495-5503. | [39] | Kim BR, Lee GY, Yu H, Maeng HJ, Oh TJ, Kim KM, Moon JH, Lim S, Jang HC, Choi SH. Suppression of Nrf2 attenuates adipogenesis and decreases FGF21 expression through PPAR gamma in 3T3-L1 cells. Biochem Biophys Res Commun, 2017, doi: 10.1016/j.bbrc.2017.01.107. | [40] | Luo HF, Zhou YF, Hu XM, Peng XW, Wei HK, Peng J, Jiang SW. Activation of PPARγ2 by PPARγ1 through a functional PPRE in transdifferentiation of myoblasts to adipocytes induced by EPA. Cell Cycle, 2015, 14(12): 1830-1841. | [41] | Nanbu-Wakao R, Morikawa Y, Matsumura I, Masuho Y, Muramatsu MA, Senba E, Wakao H. Stimulation of 3T3- L1 adipogenesis by signal transducer and activator of transcription 5. Mol Endocrinol, 2002, 16(7): 1565-1576. | [42] | Lu SM, Ren R, MA WS. The role and regulation of transcription factors Twist 1 and PPARγ in mice 3T3-L1 adipocytes. Chin J Clin Lab Sci, 2016, 34(4): 251-255. | [42] | 逯素梅, 任瑞, 马万山. 转录因子Twist 1和PPARγ在3T3-L1细胞中的作用及调控关系. 临床检验杂志, 2016, 34(4): 251-255. | [43] | Farmer SR. Transcriptional control of adipocyte formation. Cell Metab, 2006, 4(4): 263-273. | [44] | Sue N, Jack BHA, Eaton SA, Pearson RCM, Funnell APW, Turner J, Czolij R, Denyer G, Bao SS, Molero-Navajas J C, Perkins A, Fujiwara Y, Orkin SH, Bell-Anderson K, Crossley M. Targeted disruption of the Basic Krüppel- like Factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 2008, 28(12): 3967-3978. | [45] | Zhang ZW, Wang ZP, Zhang K, Wang N, Li H. Cloning, tissue expression and polymorphisms of chicken Krüppel- like factor 7 gene. Anim Sci J, 2013, 84(7): 535-542. | [46] | Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK. The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-γ expression and adipogenesis. J Biol Chem, 2003, 278(4): 2581-2584. | [47] | Zhang ZW, Rong EG, Shi MX, Wu CY, Sun B, Wang YX, Wang N, Li H. Expression and functional analysis of Krüppel-like factor 2 in chicken adipose tissue. J Anim Sci, 2014, 92(11): 4797-805. | [48] | Fan WQ, Imamura T, Sonoda N, Sears DD, Patsouris D, Kim JJ, Olefsky JM. FOXO1 transrepresses peroxisome proliferator-activated receptor γ transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem, 2009, 284(18): 12188-12197. | [49] | Wu CY, Jia YY, Lee JH, Kim Y, Sekharan S, Batista VS, Lee SJ. Activation of OR1A1 suppresses PPAR-γ expression by inducing HES-1 in cultured hepatocytes. Int J Biochem Cell Biol, 2015, 64: 75-80. | [50] | Du BW, Cawthorn WP, Su A, Doucette CR, Yao Y, Hemati N, Kampert S, McCoin C, Broome DT, Rosen CJ, Yang GS, MacDougald OA. The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling. J Biol Chem, 2013, 288(5): 3036-3047. | [51] | Shao XR, Wang MQ, Wei XQ, Deng SW, Fu N, Peng Q, Jiang Y, Ye L, Xie JM, Lin YF. Peroxisome proliferator- activated receptor-γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther, 2016, 11(3): 282-289. | [52] | Wang N, Yan XH. Research advances on coregulators in adipocyte differentiation. Prog Physiol Sci, 2009, 40(4): 308-312. | [52] | 王宁, 闫晓红. 脂肪细胞分化辅助调节因子的研究进展. 生理科学进展, 2009, 40(4): 308-312. | [53] | Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006, 7(12): 885-896. | [54] | Takahashi Y, Ohoka N, Hayashi H, Sato R. TRB3 suppresses adipocyte differentiation by negatively regulating PPARγ transcriptional activity. J Lipid Res, 2008, 49(4): 880-892. | [55] | Gao Y, Sun YN, Li H, Wang N. DNA methylation and adipose tissue development. Chin J Cell Biol, 2012, 34(9): 916-923. | [55] | 高媛, 孙婴宁, 李辉, 王宁. DNA甲基化与脂肪组织生长发育. 中国细胞生物学学报, 2012, 34(9): 916-923. | [56] | Davé V, Yousefi P, Huen K, Volberg V, Holland N. Relationship between expression and methylation of obesity- related genes in children. Mutagenesis, 2015, 30(3): 411-420. | [57] | Fujiki K, Kano F, Shiota K, Murata M. Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol, 2009, 7: 38. | [58] | Sun YN, Gao Y, Qiao SP, Wang SZ, Duan K, Wang YX, Li H, Wang N. Epigenetic DNA methylation in the promoters of peroxisome proliferator-activated receptor γ in chicken lines divergently selected for fatness. J Anim Sci, 2014, 92(1): 48-53. | [59] | Zhang TM, Duan K, Wang SZ, Yan XH, Li H, Wang N. Comparison of DNA methylation in abdominal adipose tissue between chicken lines divergently selected for fatness. Chin J Anim Sci, 2016, 52(7): 22-26. | [59] | 张天目, 段逵, 王守志, 闫晓红, 李辉, 王宁. 高、低脂鸡腹部脂肪组织DNA甲基化的差异分析. 中国畜牧杂志, 2016, 52(7): 22-26. | [60] | Graca I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jeronimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics, 2016, 8: 87. | [61] | Li HT, Duymich CE, Weisenberger DJ, Liang GN. Genetic and epigenetic alterations in bladder cancer. Int Neurourol J, 2016, 20(S2): S84-94. | [62] | Jenuwein T, Allis CD. Translating the histone code. Science, 2001, 293(5532): 1074-1080. | [63] | Lee JE, Wang CC, Xu SY, Cho YW, Wang LF, Feng XS, Baldridge A, Sartorelli V, Zhuang L, Peng WQ, Ge K. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife, 2013, 24(2): e01503. | [64] | Wang LF, Xu S, Lee JE, Baldridge A, Grullon S, Peng WQ, Ge K. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO J, 2013, 32(1): 45-59. | [65] | Wang LF, Jin QH, Lee JE, Su IH, Ge K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA, 2010, 107(16): 7317-7322. | [66] | Mikkelsen TS, Xu Z, Zhang XL, Wang L, Gimble JM, Lander ES, Rosen ED. Comparative epigenomic analysis of murine and human adipogenesis. Cell, 2010, 143(1): 156-69. | [67] | Lynch PJ, Thompson EE, McGinnis K, Rovira Gonzalez YI, Lo Surdo J, Bauer SR, Hursh DA. Chromatin changes at the PPAR-γ2 promoter during bone marrow-derived multipotent stromal cell culture correlate with loss of gene activation potential. Stem Cells, 2015, 33(7): 2169-2181. | [68] | Lee JH, Lee HH, Ye BJ, Lee-Kwon W, Choi SY, Kwon HM. TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPARg2. Sci Rep, 2015, 5: 2538. | [69] | Sugii S, Evans RM. Epigenetic codes of PPARγ in metabolic disease. FEBS Lett, 2011, 585(13): 2121-2128. | [70] | Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ Jr, Lazar MA. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev, 2010, 24(10): 1035-1044. | [71] | McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med, 2011, 11(4): 304-316. | [72] | Li H, Xue M, Xu J, Qin XH. MiR-301a is involved in adipocyte dysfunction during obesity-related inflammation via suppression of PPARγ. Pharmazie, 2016, 71(2): 84-88. | [73] | Jeong BC, Kang IH, Koh JT. MicroRNA-302a inhibits adipogenesis by suppressing peroxisome proliferator-activated receptor γ expression. FEBS Lett, 2014, 588(18): 3427-3434. | [74] | Sun JK, Wang YS, Li YB, Zhao GQ. Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenicpotential. J Transl Med, 2014, 12: 168. | [75] | Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M. MiR-130 suppresses Adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol Cell Biol, 2011, 31(4): 626-638. | [76] | Pan SF, Yang XJ, Jia YM, Li Y, Chen RR, Wang M, Cai DM, Zhao RQ. Intravenous injection of microvesicle-delivery miR-130b alleviates high-fat diet-induced obesity in C57BL/6 mice through translational repression of PPAR-γ. J Biomedical Sci, 2015, 22: 86. | [77] | Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol, 2011, 38(4): 239-246. | [78] | Xie HM, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5): 1050-1057. | [79] | Chen J, Liu Y, Lu S, Yin L, Zong C, Cui S, Qin D, Yang Y, Guan Q, Li X, Wang X. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. Int J Obes, 2017, 41(2): 299-308. | [80] | Cooper DR, Carter G, Li PF, Patel R, Watson JE, Patel NA. Long non-coding RNA NEAT1 associates with SRp40 to temporally regulate PPARγ2 splicing during adipogenesis in 3T3-L1 cells. Genes, 2014, 5(4): 1050-1063. | [81] | Divoux A, Karastergiou K, Xie H, Guo WM, Perera RJ, Fried SK, Smith SR. Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity, 2014, 22(8): 1781-1785. | [82] | Siersbaek R, Nielsen R, John S, Sung MH, Baek S, Loft A, Hager GL, Mandrup S. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J, 2011, 30(8): 1459-147. | [83] | Berezin A. Epigenetics in heart failure phenotypes. BBA Clin, 2016, 6: 31-37. |
|