遗传 ›› 2020, Vol. 42 ›› Issue (3): 309-320.doi: 10.16288/j.yczz.19-265
杜坤, 毛初阳, 任安勇, 吴雪梅, 李庆玲, 陈婷婷, 陈仕毅, 赖松家()
收稿日期:
2019-09-04
修回日期:
2019-12-11
出版日期:
2020-03-20
发布日期:
2020-01-13
通讯作者:
赖松家
E-mail:laisj5794@163.com
作者简介:
杜坤,硕士研究生,专业方向:动物遗传育种与繁殖。E-mail: 基金资助:
Kun Du, Chuyang Mao, Anyong Ren, Xuemei Wu, Qingling Li, Tingting Chen, Shiyi Chen, Songjia Lai()
Received:
2019-09-04
Revised:
2019-12-11
Online:
2020-03-20
Published:
2020-01-13
Contact:
Lai Songjia
E-mail:laisj5794@163.com
Supported by:
摘要:
脂肪的过度积累严重危害人类健康。前体脂肪细胞分化是脂肪发育的关键过程,研究前体脂肪细胞分化相关基因的表达有助于认识脂肪沉积的机理。尽管家兔是一种理想的研究脂肪发育的动物模型,但是针对其前体脂肪细胞分化不同时期基因表达谱的研究鲜见报道。本研究通过诱导家兔前体脂肪细胞分化,在分化第0 d、3 d和9 d收集脂肪细胞,利用转录组测序(RNA-seq),在分化第3 d样本与第0 d样本的比较中筛选出1352个差异表达基因(differentially expressed genes, DEGs),在分化第9 d样本与第3 d样本的比较中筛选出888个DEGs。GO (gene ontology)功能富集和KEGG (kyoto encyclopedia of genes and genomes)通路分析发现,0~3 d分化期上调的DEGs显著富集在PPAR信号通路和PI3K-Akt信号通路上,3~9 d分化期上调的DEGs显著富集到与细胞周期调控有关的GO条目和KEGG信号通路,0~3 d和3~9 d阶段特异上调的DEGs可能分别作用于细胞质和细胞核。通过DEGs的蛋白-蛋白互作(protein-protein interaction, PPI)网络分析发现,筛选出的核心节点(hub node)基因可能通过调控细胞周期而影响家兔前体脂肪细胞分化。
杜坤, 毛初阳, 任安勇, 吴雪梅, 李庆玲, 陈婷婷, 陈仕毅, 赖松家. 家兔前体脂肪细胞分化不同时期基因表达谱分析[J]. 遗传, 2020, 42(3): 309-320.
Kun Du, Chuyang Mao, Anyong Ren, Xuemei Wu, Qingling Li, Tingting Chen, Shiyi Chen, Songjia Lai. Analysis of gene expression profiles at different stages during preadipocyte differentiation in rabbits[J]. Hereditas(Beijing), 2020, 42(3): 309-320.
附表1
qRT-PCR引物序列"
序号 | 基因名 | 上游引物(5′→3′) | 下游引物(5′→3′) |
---|---|---|---|
1 | GAPDH | CTTCGGCATTGTGGAGGG | GGAGGCAGGGATGATGTTCT |
2 | E5133 | GTAGCTTGAAAGAGCTCCACC | GTGCAGGATACTTCAGGAGC |
3 | PPARG | GAGGACATCCAGGACAACC | GTCCGTCTCCGTCTTCTTT |
4 | FABP4 | GGCCAGGAATTTGATGAAGTC | AGTTTATCGCCCTCCCGTT |
5 | CSRP2 | CGGGAGGACCGTGTACCAT | TGAGGCTGAACATGCATAGGA |
6 | ADIPOR2 | GTTGCTGGGATACAGCCCTT | AGGTTCGAGTGTGCAGGAAG |
7 | IL1R1 | AGCTTCCAGAACGGTGGATG | AGGCGCGAACACCTATTTCA |
[1] | Saxena A, Tiwari P, Wahi N, Soni A, Bansiwal RC, Kumar A, Sharma B, Punjabi P, Gupta N, Malik B, Medicherla KM, Suravajhala P, Mathur SK . Transcriptome profiling reveals association of peripheral adipose tissue pathology with type-2 diabetes in Asian Indians. Adipocyte, 2019,8(1):125-136. |
[2] | Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich- Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB Sr, O'Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the framingham heart study. Circulation, 2007,116(1):39-48. |
[3] | Kershaw EE, Flier JS . Adipose tissue as an endocrine organ. J Clin Endocrinol Metab, 2004,89(6):2548-2556. |
[4] | Zhang T, Zhang XQ, Han KP, Zhang GX, Wang JY, Xie KZ, Xue Q . Genome-Wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken. G3 (Bethesda), 2017,7(3):953-966. |
[5] | Zhang JW, Luo Y, Wang YH, He LJ, Li MZ, Wang X . MicroRNA regulates animal adipocyte differentiation. Hereditas(Beijing), 2015,37(12):1175-1184. |
张进威, 罗毅, 王宇豪, 何刘军, 李明洲, 王讯 . MicroRNA调控动物脂肪细胞分化研究进展. 遗传, 2015,37(12):1175-1184. | |
[6] | Lee MJ . Hormonal regulation of adipogenesis. Compr Physiol, 2017,7(4):1151-1195. |
[7] | Sarjeant K, Stephens JM . Adipogenesis. Cold Spring Harb Perspect Biol, 2012,4(9):a008417. |
[8] | Tontonoz P, Hu E, Spiegelman BM . Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell, 1994,79(7):1147-1156. |
[9] | Wang L, Na W, Wang YX, Wang YB, Wang N, Wang QG, Li YM, Li H . Characterization of chicken PPARγ expression and its impact on adipocyte proliferation and differentiation. Hereditas(Beijing), 2012,34(4):454-464. |
王丽, 那威, 王宇祥, 王彦博, 王宁, 王启贵, 李玉茂, 李辉 . 鸡PPARγ基因的表达特性及其对脂肪细胞增殖分化的影响. 遗传, 2012,34(4):454-464. | |
[10] | Lin FT, Lane MD . CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci USA, 1994,91(19):8757-8761. |
[11] | Deng TM, Wang YH, Wang CC, Yan H . FABP4 silencing ameliorates hypoxia reoxygenation injury through the attenuation of endoplasmic reticulum stress-mediated apoptosis by activating PI3K/Akt pathway. Life Sci, 2019,224:149-156. |
[12] | Liu Y, Peng WQ, Guo YY, Liu Y, Tang QQ, Guo L . Krüppel-like factor 10 (KLF10) is transactivated by the transcription factor C/EBPβ and involved in early 3T3-L1 preadipocyte differentiation. J Biol Chem, 2018,293(36):14012-14021. |
[13] | Tang Q, Chen C, Zhang Y, Dai MJ, Jiang YC, Wang H, Yu M, Jing W, Tian WD . Wnt5a regulates the cell proliferation and adipogenesis via MAPK-independent pathway in early stage of obesity. Cell Biol Int, 2018,42(1):63-74. |
[14] | Yuan YY, Xi Y, Chen JY, Zhu P, Kang JY, Zou ZQ, Wang FY, Bu SZ . STAT3 stimulates adipogenic stem cell proliferation and cooperates with HMGA2 during the early stage of differentiation to promote adipogenesis. Biochem Biophys Res Commun, 2017,482(4):1360-1366. |
[15] | Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, Fini M, Giardino R, Facchini A, Grigolo B . Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther, 2013,15(1):R22. |
[16] | Gong LL, Wang C, Li YR, Sun QZ, Li GZ, Wang DR . Effects of human adipose-derived stem cells on the viability of rabbit random pattern flaps. Cytotherapy, 2014,16(4):496-507. |
[17] | Maneschi E, Vignozzi L, Morelli A, Mello T, Filippi S, Cellai I, Comeglio P, Sarchielli E, Calcagno A, Mazzanti B, Vettor R, Vannelli GB, Adorini L, Maggi M . FXR activation normalizes insulin sensitivity in visceral preadipocytes of a rabbit model of MetS. J Endocrinol, 2013,218(2):215-231. |
[18] | Zebisch K, Voigt V, Wabitsch M, Brandsch M . Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem, 2012,425(1):88-90. |
[19] | Chen SF, Zhou YQ, Chen YR, Gu J . Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018,34(17):i884-i890. |
[20] | Kim D, Langmead B, Salzberg SL . HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015,12(4):357-360. |
[21] | Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL . Transcript-level expression analysis of RNA-seq experiments with HISAT, stringtie and ballgown. Nat Protoc, 2016,11(9):1650-1667. |
[22] | Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014,15(12):550. |
[23] | Huang Da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009,4(1):44-57. |
[24] | Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C, . The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017,45(D1):D362-D368. |
[25] | Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY . CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 2014,8(Suppl.4):S11. |
[26] | Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13(11):2498-2504. |
[27] | Huang WL, Zhang XX, Li A, Miao XY . Identification of differentially expressed genes between subcutaneous and intramuscular adipose tissue of large white pig using RNA-seq. Hereditas(Beijing), 2017,39(6):501-511. |
黄万龙, 张秀秀, 李嫒, 苗向阳 . 利用RNA-seq技术筛选大白猪皮下和肌内脂肪组织差异表达基因. 遗传, 2017,39(6):501-511. | |
[28] | Chang HR, Kim HJ, Xu X, Ferrante AW Jr . Macrophage and adipocyte IGF1 maintain adipose tissue homeostasis during metabolic stresses. Obesity (Silver Spring), 2016,24(1):172-183. |
[29] | Tang QQ, Lane MD . Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem, 2012,81:715-736. |
[30] | Hu L, Yang GD, Hägg D, Sun GM, Ahn JM, Jiang N, Ricupero CL, Wu J, Rodhe CH, Ascherman JA, Chen LL, Mao JJ . IGF1 promotes adipogenesis by a lineage bias of endogenous adipose stem/progenitor cells. Stem Cells, 2015,33(8):2483-2495. |
[31] | Pei Z, Yang Y, Kiess W, Sun CJ, Luo FH . Dynamic profile and adipogenic role of growth differentiation factor 5 (GDF5) in the differentiation of 3T3-L1 preadipocytes. Arch Biochem Biophys, 2014,560:27-35. |
[32] | Mota de Sá P, Richard AJ, Hang H, Stephens JM . Transcriptional regulation of adipogenesis. Compr Physiol, 2017,7(2):635-674. |
[33] | Świderska E, Podolska M, Strycharz J, Szwed M, Abramczyk H, Brożek-Pluska B, Wróblewski A, Szemraj J, Majsterek I, Drzewoski J, Śliwińska A . Hyperglycemia changes expression of key adipogenesis markers (C/EBPα and PPARᵞ) and morphology of differentiating Human visceral adipocytes. Nutrients, 2019,11(8):E1835. |
[34] | Cai R, Tang GR, Zhang Q, Yong WL, Zhang WR, Xiao JY, Wei CS, He C, Yang GS, Pang WJ . A Novel lnc-RNA, Named lnc-ORA, Is identified by RNA-Seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells, 2019,8(5):E477. |
[35] | Chen JH, Ren XY, Li LM, Lu SY, Cheng T, Tan LT, Liang SD, He DL, Luo QB, Nie QH, Zhang XQ, Luo W . The cell cycle pathway regulates chicken abdominal fat deposition as revealed by transcriptome sequencing. Hereditas (Beijing), 2019,41(10):962-973. |
陈家辉, 任学义, 李丽敏, 卢诗意, 程湉, 谭量天, 梁少东, 何丹林, 罗庆斌, 聂庆华, 张细权, 罗文 . 转录组测序揭示细胞周期通路参与鸡腹脂沉积. 遗传, 2019,41(10):962-973. | |
[36] | He J, Chen DL, Samocha-Bonet D, Gillinder KR, Barclay JL, Magor GW, Perkins AC, Greenfield JR, Yang G, Whitehead JP . Fibroblast growth factor-1 (FGF-1) promotes adipogenesis by downregulation of carboxypeptidase A4 (CPA4) - a negative regulator of adipogenesis implicated in the modulation of local and systemic insulin sensitivity. Growth Factors, 2016,34(5-6):210-216. |
[37] | Huang Q, Liu ML, Du XL, Zhang RH, Xue Y, Zhang YY, Zhu WD, Li D, Zhao AL, Liu Y . Role of p53 in preadipocyte differentiation. Cell Biol Int, 2014,38(12):1384-1393. |
[38] | Dalton S . Linking the cell cycle to cell fate decisions. Trends Cell Biol, 2015,25(10):592-600. |
[39] | Soufi A, Dalton S . Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. Development, 2016,143(23):4301-4311. |
[40] | Wu RF, Liu YH, Yao YX, Zhao YL, Bi Z, Jiang Q, Liu Q, Cai M, Wang FQ, Wang YZ, Wang XX . FTO regulates adipogenesis by controlling cell cycle progression via m 6A-YTHDF2 dependent mechanism . Biochim Biophys Acta Mol Cell Biol Lipids, 2018,1863(10):1323-1330. |
[41] | Lee Y, Yang H, Hur G, Yu J, Park S, Kim JH, Yoon Park JH, Shin HS, Kim JE, Lee KW . 5-(3°,4°-Dihydroxyphenyl)- γ-valerolactone, a metabolite of procyanidins in cacao, suppresses MDI-induced adipogenesis by regulating cell cycle progression through direct inhibition of CDK2/ cyclin O. Food Funct, 2019,10(5):2958-2969. |
[42] | Dasgupta N, Thakur BK, Ta A, Das S, Banik G, Das S . Polo-like kinase 1 expression is suppressed by CCAAT/ enhancer-binding protein α to mediate colon carcinoma cell differentiation and apoptosis. Biochim Biophys Acta Gen Subj, 2017,1861(7):1777-1787. |
[43] | Fujimori A, Itoh K, Goto S, Hirakawa H, Wang B, Kokubo T, Kito S, Tsukamoto S, Fushiki S . Disruption of Aspm causes microcephaly with abnormal neuronal differentiation. Brain Dev, 2014,36(8):661-669. |
[1] | 吴玲玲, 张小玉, 李晓, 靳建军, 杨公社, 史新娥. miR-196b-5p促进成肌细胞增殖分化[J]. 遗传, 2023, 45(5): 435-446. |
[2] | 王澜, 曾帆, 黄荣凤, 林树, 张志辉, 李旻典. 脂肪细胞Npy4r促进高脂饮食诱导肥胖[J]. 遗传, 2023, 45(2): 144-155. |
[3] | 赵欢, 周斌. 胰岛beta细胞再生研究进展[J]. 遗传, 2022, 44(5): 370-382. |
[4] | 余志鑫, 李鹏宇, 李凯, 缪时英, 王琳芳, 宋伟. 精原干细胞微环境研究进展[J]. 遗传, 2022, 44(12): 1103-1116. |
[5] | 曾帆, 王澜, 万小勤, 黄荣凤, 张志辉, 李旻典. 瘦素基因启动的新型脂肪细胞表达Cre工具小鼠的构建[J]. 遗传, 2022, 44(10): 950-957. |
[6] | 邹礼平, 潘铖, 王梦馨, 崔林, 韩宝瑜. 激素调控植物成花机理研究进展[J]. 遗传, 2020, 42(8): 739-751. |
[7] | 陈万银, 颜一丹, 栾晓瑾, 王敏, 方杰. CG8005基因在果蝇睾丸生殖细胞中的功能分析[J]. 遗传, 2020, 42(11): 1122-1132. |
[8] | 杨科, 薛征, 吕湘. 细胞终末分化过程中三维基因组结构与功能调控的分子机制[J]. 遗传, 2020, 42(1): 32-44. |
[9] | 魏金川,徐添翼,吴静,宋晓峰. 真核生物基因组长内含子递归剪接事件的分子机制[J]. 遗传, 2019, 41(2): 89-97. |
[10] | 黄子莹, 李龙, 李倩倩, 刘向东, 李长春. lncRNA TCONS_00815878对猪骨骼肌卫星细胞分化的影响[J]. 遗传, 2019, 41(12): 1119-1128. |
[11] | 李欢, 冯晋川, 李贵林, 王讯, 李明洲, 刘海峰. Lnc-RAP3对小鼠3T3-L1前脂肪细胞分化的影响[J]. 遗传, 2018, 40(9): 758-766. |
[12] | 张宇,白素英,马跃. 麝鼠前列腺在繁殖期和非繁殖期转录组差异分析[J]. 遗传, 2018, 40(6): 488-495. |
[13] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[14] | 杨熳,卢冰婕,段媛媛,陈晓峰,马建岗,郭燕. 骨质疏松症易感基因BDNF的遗传学关联分析及功能研究[J]. 遗传, 2017, 39(8): 726-736. |
[15] | 亢逸,关桂君,洪云汉. 用模式生物青鳉概观硬骨鱼性别决定及性分化研究进展[J]. 遗传, 2017, 39(6): 441-454. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: