[1] Pereira TC, Lopes-Cendes I. RNAi-mediated gene silenc-ing as a principle of action of venoms and poisons. Med Hypotheses, 2008, 70(6): 1179-1181.
[2] Rusk N. When microRNAs activate translation. Nat Methods, 2008, 5(2): 122–123.
[3] Chu CY, Rana TM. Small RNAs: regulators and guardians of the genome. J Cell Physiol, 2007, 213(2): 412–419.
[4] Willmann MR, Poethig RS. Conservation and evolution of miRNA regulatory programs in plant. Curr Opin Plant Biol, 2007, 10(5): 503–511.
[5] Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y. A com-plex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007, 21(10): 1190-1203.
[6] Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008, 14(5): 814–821.
[7] Axtell MJ. Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta, 2008, 1779(11): 725–734.
[8] Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 2007, 8(11): 884–896.
[9] Chuck G, Candela H, Hake S. Big impacts by small RNAs in plant development. Curr Opin Plant Biol, 2009, 12(1): 81–86.
[10] Sheng Y, Engström PG, Lenhard B. Mammalian microRNA prediction through a support vector machine model of se-quence and structure. PLoS ONE, 2007, 2(9): e946.
[11] Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell, 2007, 27(3): 435–448.
[12] Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ. Pseudogene-derived small inter-fering RNAs regulate gene expression in mouse oocytes. Nature, 2008, 453(7194): 534–538.
[13] Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci, 2007, 12(7): 301–309.
[14] Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta, 2008, 1779(11): 743–748.
[15] Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008, 14(5): 814–821.
[16] Shabalina SA, Koonin EV. Origins and evolution of eu-karyotic RNA interference. Trends Ecol Evol, 2008, 23(10): 578–587.
[17] Cullen BR. Is RNA interference involved in intrinsic anti-viral immunity in mammals? Nat Immunol, 2006,7(6): 563–567.
[18] Pedersen I, David M. MicroRNAs in the immune response. Cytokine, 2008, 43(3): 391–394.
[19] Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007, 449(7164): 919–922.
[20] Mahajan VS, Drake A, Chen J. Virus-specific host miRNAs: antiviral defenses or promoters of persistent in-fection? Trends Immunol, 2009, 30(1): 1–7.
[21] Peragine A, Yoshikawa M, Wu G, Albrecht HL. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 2004, 18(19): 2368–2379. [22] Axtell MJ, Snyder JA, Bartel DP, Common functions for diverse small RNAs of land plants. Plant Cell, 2007, 19(6): 1750–1769.
[23] Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev, 2007, 21(7): 750–755.
[24] Tretter EM, Alvarez JP, Eshed Y, Bowman JL. Activity range of Arabidopsis small RNAs derived from different biogenesis pathways. Plant Physiol, 2008, 147(1): 58–62.
[25] Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK. En-dogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabi-dopsis. Cell, 2005,123(7): 1279–1291.
[26] Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu JK, Staskawicz BJ, Jin HL. A patho-gen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA, 2006, 103(47): 18002–18007.
[27] Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W. Ge-nome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sa-tiva. Genome Res, 2009, 19(1): 70–78.
[28] Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramo-chi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 2008, 453(7194): 539–543.
[29] Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev, 2008, 22(20): 2773–2785. [30] Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD. Endogenous siRNAs derived from transposons and mRNAs in Droso-phila somatic cells. Science, 2008, 320(5879): 1077–1081.
[31] Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC and Siomi H. Drosophila endoge-nous small RNAs bind to Argonaute 2 in somatic cells. Nature, 2008, 453(7196): 793–797.
[32] Okamura K, Balla S, Martin R, Liu N, Lai EC. Two dis-tinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol, 2008, 15(6): 581–590.
[33] Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol, 2008, 9(9): 673–678.
[34] Sasidharan R, Gerstein M. Genomics: protein fossils live on as RNA. Nature, 2008, 453(7196): 729–731.
[35] Werner A, Carlile M, Swan D. What do natural antisense transcripts regulate? RNA Bio, 2009, 6(1): 43–48
[36] Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 2007,21(23): 3123–3134.
[37] Lu C, Jeong DH, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher SR, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers BC, Green PJ. Genome-wide analysis for discov-ery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA, 2008, 105(12): 4951–4956.
[38] Tyler DM, Okamura K, Chung WJ, Hagen JW, Berezikov E, Hannon GJ, Lai EC. Functionally distinct regulatory RNAs generated by bidirectional transcription and proc-essing of microRNA loci. Genes Dev, 2008, 22(1): 26–36.
[39] Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argo-naute/Piwi family members. Development, 2008, 135(7): 1201–1214.
[40] Tomaru Y, Hayashizaki Y. Cancer research with non- coding RNA. Cancer Sci, 2006, 97(12): 1285–1290.
[41] Herr AJ. Pathway through the small RNA world of plants. FEBS Lett, 2005, 579(26): 5879–5888.
[42] Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 2006, 20(24): 3407–3425.
[43] Fujioka T, Kaneko F, Kazama T, Suwabe K, Suzuki G, Makino A, Mae T, Endo M, Kawagishi-Kobayashi M, Watanabe M. Identification of small RNAs in late devel-opmental stage of rice anthers. Genes Genet Syst, 2008, 83(3): 281–284.
[44] Agorio A, Vera P. ARGONAUTE4 is required for resis-tance to Pseudomonas syringae in Arabidopsis. Plant Cell, 2007, 19(11): 3778–3790.
[45] Miska EA, Ahringer J. RNA interference has second helpings. Nat Biotechnol, 2007, 25(3): 302–303
[46] Zhang H, Ehrenkaufer GM, Pompey JM, Hackney JA, Singh U. Small RNAs with 5'-polyphosphate termini as-sociate with a Piwi-related protein and regulate gene ex-pression in the single-celled eukaryote Entamoeba histo-lytica. PLoS Pathog, 2008, 4(11): e1000219.
[47] Zubko E, Meyer P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J, 2007, 52(6): 1131–1139.
[48] Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, Tavaré S, Miska EA. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell, 2008, 31(1): 79–90.
[49] Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev, 2006, 20(15): 1993–1997.
[50] Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T. The small RNA profile during Drosophila melanogaster development. Dev Cell, 2003, 5(2): 337–350.
[51] Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell, 2007, 129(1): 69–82.
[52] Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Mol Cell, 2007, 26(5): 603–609.
[53] Siomi H, Siomi MC. Interactions between transposable elements and Argonautes have (probably) been shaping the Drosophila genome throughout evolution. Curr Opin Genet Dev, 2008, 18(2): 181–187.
[54] Aronica L, Bednenko J, Noto T, DeSouza LV, Siu KW, Loidl J, Pearlman RE, Gorovsky MA, Mochizuki K. Study of an RNA helicase implicates small RNA-noncoding RNA interactions in programmed DNA elimination in Tetrahymena. Genes Dev, 2008, 22(16): 2228–2241.
[55] Mochizuki K, Gorovsky MA. A Dicer-like protein in Tet-rahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev, 2005, 19(1): 77–89.
[56] Gratias A, Lepère G, Garnier O, Rosa S, Duharcourt S, Malinsky S, Meyer E, Bétermier Ml. Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites. Nu-cleic Acids Res, 2008, 36(10): 3244–3451.
[57] Lepère G, Bétermier M, Meyer E, Duharcourt S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev, 2008, 22(11): 1501–1512.
[58] Lepère G, Nowacki M, Serrano V, Gout JF, Guglielmi G, Duharcourt S, Meyer E. Silencing-associated and meio-sis-specific small RNA pathways in Paramecium tetraurelia. Nucleic Acids Res, 2009, 37(3): 903–915.
[59] Chitwood DH, Timmermans MC. Target mimics modulate miRNAs. Nat Genet, 2007, 39(8): 935–956.
[60] Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell, 2006, 127(6): 1193–1207.
[61] Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D Jr, Luo S, Schroth GP, Carrington JC, Bartel DP, Mello CC. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell, 2008, 31(1): 67–78.
[62] Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. ele-gans. Curr Biol, 2003, 13(10): 807–818.
[63] Asikainen S, Heikkinen L, Wong G, Storvik M. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans. BMC Genomics, 2008, 9: 270.
[64] Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell, 2004, 116(6): 779–793.
[65] Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev, 2007, 21(1): 11–42.
[66] Li Y, Luo J, Zhou H, Liao JY, Ma LM, Chen YQ, Qu LH. Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res, 2008, 36(19): 6048–6055.
[67] Mattick JS. A new paradigm for developmental biology. J Exp Biol, 2007, 210(9): 1526–1547.
[68] Gagen MJ, Mattick JS. Inherent size constraints on pro-karyote gene networks due to "accelerating" growth. The-ory Biosci, 2005, 123(4): 381–411.
[69] Levine E, Hwa T. Small RNAs establish gene expression thresholds. Curr Opin Microbiol, 2008, 11(6): 574–579. |