[1] Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Mo-rales DR, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. Many human large intergenic noncoding RNAs associate with chro-matin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667–11672. [2] Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MMS, Scanlon MJ, Yu JM, Schnable PS, Timmermans MCP, Springer NM, Muehlbauer GJ. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol, 2014, 15(2): R40. [3] Boerner S, McGinnis KM. Computational identification and functional predictions of long noncoding RNA in Zea mays. PloS ONE, 2012, 7(8): e43047. [4] Liu J, Jung C, Xu J, Wang H, Deng SL, Bernad L, Are-nas-Huertero C, Chua NH. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Ara-bidopsis. Plant Cell, 2012, 24(11): 4333–4345. [5] Voinnet O. Origin, biogenesis, and activity of plant mi-croRNAs. Cell, 2009, 136(4): 669–687. [6] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215–233. [7] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Wide-spread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320(5880): 1185–1190. [8] Majoros WH, Ohler U. Spatial preferences of microRNA targets in 3' untranslated regions. BMC Genomics, 2007, 8(1): 152. [9] Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA- miRNA interactions. PloS ONE, 2013, 8(2): e53823. [10] Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell, 2011, 146(3): 353–358. [11] Zhao Y, He SM, Liu CN, Ru SW, Zhao HT, Yang Z, Yang PC, Yuan XY, Sun SW, Bu DB, Huang JF, Skogerb? G, Chen RS. MicroRNA regulation of messenger-like noncoding RNAs: a network of mutual microRNA control. Trends Genet, 2008, 24(7): 323–327. [12] Liu K, Yan ZM, Li YC, Sun ZR. Linc2GO: a human Lin-cRNA function annotation resource based on ceRNA hy-pothesis. Bioinformatics, 2013, 29(17): 2221–2222. [13] Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358–369. [14] Wu HJ, Wang ZM, Wang M, Wang XJ. Widespread long noncoding RNAs as endogenous target mimics for mi-croRNAs in plants. Plant Physiol, 2013, 161(4): 1875–1884. [15] Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ. Endog-enous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome. Curr Biol, 2008, 18(10): 758–762. [16] German MA, Pillay M, Jeong DH, Hetawal A, Luo SJ, Ja-nardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ. Glob-al identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 2008, 26(8): 941–946. [17] German MA, Luo SJ, Schroth G, Meyers BC, Green PJ. Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc, 2009, 4(3): 356–362. [18] Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang WX, Sunkar R. Tran-scriptome-wide identification of microRNA targets in rice. Plant J, 2010, 62(5): 742–759. [19] Mao WH, Li ZY, Xia XJ, Li YD, Yu JQ. A combined ap-proach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PloS ONE, 2012, 7(3): e33040. [20] Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008, 36(Database issue): D154–D158. [21] Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang MZ, Huang W, Mueller LA, Bhattacharyya D, Bhaya D, Sobral BW, Beavis W, Meinke DW, Town CD, Somerville C, Rhee SY. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information re-trieval, analysis, and visualization system for a model plant. Nucleic Acids Res, 2001, 29(1): 102–105. [22] Nakano M, Nobuta K, Vemaraju K, Tej SS, Skogen JW, Meyers BC. Plant MPSS databases: signature-based tran-scriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res, 2006, 34(Database issue): D731–D735. [23] Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R. NCBI GEO: archive for high-throughput func-tional genomic data. Nucleic Acids Res, 2009, 37(Database issue): D885–D890. [24] Lorenz R, Bernhart SH, H?ner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms Mol Biol, 2011, 6(1): 26. [25] Tafer H, Hofacker IL. RNAplex: a fast tool for RNA–RNA interaction search. Bioinformatics, 2008, 24(22): 2657–2663. [26] Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipe-line for using degradome data to find cleaved small RNA targets. Bioinformatics, 2009, 25(1): 130–131. [27] Williams L, Carles CC, Osmont KS, Fletcher JC. A database analysis method identifies an endogenous trans-act?ing short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA, 2005, 102(27): 9703–9708. [28] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecu-lar interaction networks. Genome Res, 2003, 13(11): 2498–2504. [29] Zheng Q, Wang XJ. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res, 2008, 36(Web Server issue): W358–W363. |