遗传 ›› 2011, Vol. 33 ›› Issue (9): 962-974.doi: 10.3724/SP.J.1005.2011.00962
王傲雪1,2, 陈秀玲1
收稿日期:
2010-11-16
修回日期:
2011-06-16
出版日期:
2011-09-20
发布日期:
2011-09-25
通讯作者:
王傲雪
E-mail:wangaoxue@yahoo.com
基金资助:
教育部高等学校博士学科点专项科研基金(编号:20092325110001)和教育部科学技术研究重点项目(编号:211043)资助
WANG Ao-Xue1,2, CHEN Xiu-Ling1
Received:
2010-11-16
Revised:
2011-06-16
Online:
2011-09-20
Published:
2011-09-25
摘要: 文章综述了近年来国内外番茄转基因研究的进展, 主要包括抗病虫害、抗逆、抗除草剂、耐储运、品质改良、雄性不育等方面的转基因番茄所获得的成果, 并且阐述了利用转基因番茄生产异源蛋白的研究进展。同时对番茄的产业化现状及存在的问题进行了分析, 并就现状对我国今后转基因番茄研究和产业化的前景进行了展望。
王傲雪,陈秀玲. 转基因番茄的研究现状及其产业化[J]. 遗传, 2011, 33(9): 962-974.
WANG Ao-Xue, CHEN Xiu-Ling. Current status and industrialization of transgenic tomatoes[J]. HEREDITAS, 2011, 33(9): 962-974.
[1] Powell AP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232(4751): 738-743.[2] 周北雁, 李毅, 陈章良. 北京大学的抗病毒转基因作物. 生物技术通报, 1999, (3): 42-45.[3] Kaniewski W, Ilardi V, Tomassoli L, Mitsky T, Layton J, Barba M. Extreme resistance to cucumber mosaic virus (CMV) in transgenic tomato expressing one or two viral coat proteins. Mol Breed, 1999, 5(2): 111-119.[4] Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res, 2007, 16(3): 385-398.[5] Tamarzizt HB, Chouchane SG, Lengliz R, Maxwell DP, Marrakchi M, Fakhfakh H, Gorsane F. Use of tomato leaf curl virus (TYLCV) truncated Rep gene sequence to engineer TYLCV resistance in tomato plants. Acta Virol, 2009, 53(2): 99-104.[6] 朱秋菊. 转核酶基因、反义和正义CMV-CP基因番茄的抗黄瓜花叶病毒(CMV)研究[学位论文]. 北京: 中国科学院研究生院(植物研究所), 2005.[7] Itaya A, Bundschuh R, Archual AJ, Joung JG, Fei ZJ, Dai XB, Zhao PX, Tang YH, Nelson RS, Ding B. Small RNAs in tomato fruit and leaf development. Biochim Biophys Acta, 2008, 1779(2): 99-107.[8] Yin ZJ, Li CH, Han XL, Shen FF. Identification of con-served microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene, 2008, 414(1-2): 60-66.[9] Bazzini AA, Asís R, González V, Bassi S, Conte M, Soria M, Fernie AR, Asurmendi S, Carrari F. miSolRNA: A tomato micro RNA relational database. BMC Plant Biol, 2010, 10(1): 1-7.[10] Zhang XH, Li HX, Zhang JH, Zhang CJ, Gong PJ, Ziaf K, Xiao FM, Ye ZB. Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res, 2011, 20(3): 569-581.[11] Jongedijk E, Tigelaar H, Vanroekel JSC, Bresvloemans SA, Dekker I. Synergistic activity of chitinases and β-1,3- glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 1995, 85(1-3): 173-180.[12] Chen SC, Liu AR, Wang F H, Ahammed G J. Combined overexpression of chitinase and defensin genesin transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol, 2009, 8(20): 5182-5188.[13] Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol, 1997, 51(4): 265-278.[14] Khan RS, Nakamura I, Mii M. Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep, 2011, 30(6): 1041-1053.[15] Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA, 1999, 96(24): 14153-14158.[16] Jan PS, Huang HY, Chen HM. Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol, 2010, 76(3): 769-775.[17] Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol, 2008, 146(4): 1797-1809.[18] Rezk AAS, Abdallah NA, Abdel AM, Nakhla MK, Mazyad HM, Maxwell DP. Transgene-mediated RNA silencing of TYLCV genes affecting the accumulation of viral DNA in plants. Arab J Biotech, 2006, 9(1): 143-158.[19] Koshino-Kimura Y, Takenaka K, Domoto F, Ohashi M, Miyazaki T, Aoyama Y, Sera T. Construction of plants resistant to TYLCV by using artificial zinc-finger proteins. Nucleic Acids Symp Ser (Oxf), 2009, 53(1): 281-282.[20] Schwind N, Zwiebel M, Itaya A, Ding B, Wang MB, Krczal G, Wassenegger M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol Plant Pathol, 2009, 10(4): 459-469.[21] Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJM, Peumans WJ, Korban SS. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta, 2005, 222(5): 858-866.[22] Flors V, Leyva MO, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C. Absence of the endo-β-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Plant J, 2007, 52(6): 1027-1040.[23] Loebenstein G, David DR, Leibman D, Gal-On A, Vunsh R, Czosnek H, Elad Y. Tomato plants transformed with the inhibitor-of-virus-replication gene are partially resistant to Botrytis cinerea. Phytopathology, 2010, 100(3): 225-229.[24] Huang HE, Liu CA, Lee MJ, Kuo CG, Chen HM, Ger MJ, Tsai YC, Chen YR, Lin MK, Feng TY. Resistance enhancement of transgenic tomato to bacterial pathogens by the heterologous expression of sweet pepper ferredoxin-I protein. Phytopathology, 2007, 97(8): 900-906.[25] Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT. Insect tolerant transgenic tomato plants. Nat Biotechnol, 1987, 5(8): 807-813.[26] Salm T, Bosch D, Honée G, Feng LX, Munsterman E, Bakker P, Stiekema WJ, Visser B. Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: a resistance management strategy. Plant Mol Biol, 1994, 26(1): 51-59.[27] 吴昌银, 叶志彪, 李汉霞, 唐克轩. 雪花莲外源凝集素基因转化番茄. 植物学报, 2000, 42(7): 719-723.[28] Lawrence SD, Novak NG. Expression of poplar chitinase in tomato leads to inhibition of development in Colorado potato beetle. Biotechnol Lett, 2006, 28(8): 593-599.[29] Chen RG, Zhang LY, Zhang JH, Zhang W, Wang X, Ouyang B, Li HX, Ye ZB. Functional characterization of Mi, a root-knot nematode resistance gene from tomato (Lycopersicon esculentum L.). J Integr Plant Biol, 2006, 48(12): 1458-1465.[30] Chan YL, Yang AH, Chen JT, Yeh KW, Chan MT. Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep, 2010, 29(3): 231-238.[31] Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P. Expression of antifreeze proteins in transgenic plants. Plant Mol Biol, 1991, 17(5): 1013-1021.[32] 黄永芬, 汪清胤, 傅桂荣, 赵晓祥, 杨志兴. 美洲拟鲽抗冻蛋白基因(AFP)导入番茄的研究. 中国生物化学与分子生物学报, 1997, 13(4): 418-422.[33] 赵春梅, 王丽, 伊淑莹, 刘箭. 番茄转ER-sHSP基因植株构建及其抗冷性研究. 园艺学报, 2006, 33(5): 989-994.[34] Singh S, Rathore M, Goyary D, Singh RK, Anandhan S, Sharma DK, Ahmed Z. Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep, 2011, 30(6): 1019-1028.[35] Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT. Heterology expression of the Arabidopsis C-Repeat/Dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002, 129(3): 1086-1094.[36] Lee JT, Prasad V, Yang PT, Wu JF, David Ho TH, Charng YY, Chan MT. Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ, 2003, 26(7): 1181-1190.[37] Cheng L, Zou YJ, Ding SL, Zhang JJ, Yu XL, Cao JS, Lu G. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol, 2009, 51(5): 489-499.[38] Pan IC, Li CW, Su RC, Cheng CP, Lin CS, Chan MT. Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato. Planta, 2010, 232(5): 1075-1086.[39] Li W, Kabbage M, Dickman MB. Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. Physiol Mol Plant Pathol, 2010, 74(5-6): 363-375.[40] Zhang XH, Zou Z, Gong PJ, Zhang JH, Ziaf K, Li HX, Xiao FM, Ye ZB. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett, 2011, 33(2): 403-409.[41] Gao N, Su YH, Min J, Shen WS, Shi WM. Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil, 2010, 334(1-2): 123-136.[42] Zhang ZJ, Zhang HW, Quan RD, Wang XC, Huang RF. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol, 2009, 150(1): 365-377.[43] Zhang ZJ, Huang RF. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol, 2010, 73(3): 241-249.[44] Zhang Y, Liu H, Li B, Zhang JT, Li YZ, Zhang HX. Generation of selectable marker-free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system. Transgenic Res, 2009, 18(4): 607-619.[45] Yu C, Wang HS, Yang S, Tang XF, Duan M, Meng QW. Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Biochem, 2009, 47(11-12): 1102-1112.[46] Domínguez T, Hernández ML, Pennycooke JC, Jiménez P, Martínez-Rivas JM, Sanz C, Stockinger EJ, Sánchez-Serrano JJ, Sanmartin M. Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol, 2010, 153(2): 655-665.[47] Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 2007, 226(5): 1097-1108.[48] Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH. Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun, 2007, 363(4): 983-988.[49] Goel D, Singh AK, Yadav V, Babbar SB, Bansal K. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma, 2010, 245(1-4): 133-141.[50] Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ, 2010, 33(12): 2191-2208.[51] Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep, 2011, 30(3): 389-398.[52] Goel D, Singh A, Yadav V, Babbar SB, Murata N, Bansala KC. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol, 2011, 168(11): 1286-1294.[53] De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Rao Movva N, Thompson C, van Montagu M, Leemans J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J, 1987, 6(9): 2513-2518.[54] Redenbaugh K, Hiatt WR, Martineau B, Kramer M, Sheehy R, Sanders R, Houck C, Emlay D. Safety assessment of genetically engineered fruits and vegetables: A case study of the Flavr Savr tomato. Boca Raton: CRC Press, 1992: 288.[55] Zhao JH, Zhao DG. Transient expression of organophosphorus hydrolase to enhance the degrading activity of tomato fruit on coumaphos. J Zhejiang Univ Sci B, 2009, 10(2): 142-146.[56] Kramer MG, Kellogg J, Wagoner W, Matsumura W, Good X, peters S, Clough G, Bestwick RK. Reduced ethylene synthesis and ripening control in tomatoes expressing S-adenosylmethionine hydrolase. In: Kanelis AK, Chang C, Klee H, Bleeker AB, Pech JC, Grierson D, eds. Biology and Biotechnology of the Plant Hormone Ethylene. Kluwer Acad Pub Dordrecht, 1997, 307-319.[57] Fillatti JJ, Kiser J, Rose R, Comai L. Efficient transfer of a glyphosate rolerance gene into tomato using a binary agrobacterium tumefaciens vector. Nat Biotechnol, 1987, 5(7): 726-730.[58] Wang TW, Zhang CG, Wu W, Nowack LM, Madey E, Thompson, JE. Antisense Suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol, 2005, 138(3): 1372-1382.[59] Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczytt K. Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breed, 2003, 122(4): 347-351.[60] Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizu E, Rolin D, Moriguchi T, Ezura H. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol, 2011, 168(3): 242-252.[61] Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta, 2003, 217(5): 726-735.[62] Wang CL, Chin CK, Ho CT, Hwang CF, Polashock JJ, Martin CE. Changes of fatty acids and fatty acid derived flavor compounds by expressing the yeast Delta-9 desaturase gene in tomato. J Agric Food Chem, 1996, 44(10): 3399-3402.[63] Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai N, Simon JE, Pichersky E, Lewinsohn E. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat Biotechnol, 2007, 25(8): 899-901.[64] Le LQ, Lorenz Y, Scheurer S, Fötisch K, Enrique E, Bartra J, Biemelt S, Vieths S, Sonnewald U. Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J, 2006, 4(2): 231-242.[65] Le LQ, Mahler V, Lorenz Y, Scheurer S, Biemelt S, Vieths S, Sonnewald U. Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immun, 2006, 118(5): 1176-1183.[66] Sheng JP, Liu KL, Fan B, Yuan Y, Shen L, Ru BG. Improving zinc content and antioxidant activity in transgenic tomato plants with expression of mouse metallothionein-I by mt-Igene. J Agric Food Chem, 2007, 55(24): 9846-9849.[67] Bao BL, Ke LQ, Jiang JM, Ying TJ. Fruit quality of transgenic tomatoes with suppressed expression of LeETR1 and LeETR2 genes. Asia Pac J Clin Nutr, 2007, 16(Suppl. 1): 122-126.[68] Wang SH, Liu JK, Feng YY, Niu XL, Giovannoni J, Liu YS. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J, 2008, 55(1): 89-103.[69] Centeno DC, Osorio S, Nunes-Nesi A, Bertolo ALF, Carneiro RT, Araújo WL, Steinhauser MC, Michalska J, Rohrmann J, Geigenberger P, Oliver SN, Stitt M, Carrari F, Rose JKC, Fernie AR. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. Plant Cell, 2011, 23(1): 162-184.[70] Seo YS, Kim SJ, Harn CH, Kim WT. Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochemistry, 2011, 72(4-5): 321-329.[71] Hiwasa-Tanase K, Nyarubona M, Hirai T, Kato K, Ichikawa T, Ezura H. High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Rep, 2011, 30(1): 113-124.[72] Hirai T, Kim YW, Kato K, Hiwasa-Tanase K, Ezura H. Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res, 2011 (Online First).[73] Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, Greef WD, Leemans J. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature, 1992, 357(6377): 384-387.[74] Sandhu APS, Abdelnoor RV, Mackenzie SA. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA, 2007, 104(6): 1766-1770.[75] 宋洪元, 任雪松, 司军, 李成琼, 宋明, 雷建军. 利用Cre/lox重组系统建立番茄基因工程雄性不育恢复系.中国农业科学, 2009, 42(10): 3581-3591.[76] McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH. Expression of the rabies virus glycoprotein in transgenic tomatoes. Nat Biotechnol, 1995, 13(12): 1484-1487.[77] Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang HK. Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clin Vaccine Immunol, 2007, 14(4): 464-469.[78] Salyaev RK, Rekoslavskaya NI, Stolbikov AS, Hammond RW, Shchelkunov SN. Synthesis of hepatitis B virus surface antigen in tomato plants transgenic for the preS2-S gene. Dokl Biochem Biophys, 2007, 416(1): 290-293.[79] Hao HY, Wei YH, Zhu JG, Sun J, Wang YN, Jing EY, Zhang BL, Xue K. Expression of oral hepatitis B vaccine in transgenic tomato. Food Sci, 2007, 28(6): 201-204.[80] Wang YQ, Li T. Transformation of HBsAg gene into tomato and production of transgenic tomato plants. J Southwest Univ (Nat Sci Ed), 2008, 30(7): 78-83.[81] Srinivas L, Sunil-Kumar GB, Ganapathi TR, Revathi CJ, Bapat VA. Transient and stable expression of hepatitis B surface antigen in tomato (Lycopersicon esculentum L.). Plant Biotechnol Rep, 2008, 2(1): 1-6.[82] Sandhu JS, Krasnyanski SF, Domier LL, Korban SS, Osadjan MD, Buetow DE. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res, 2000, 9(2): 127-135.[83] Huang Z, Elkin G, Maloney BJ, Beuhner N, Arntzen CJ, Thanavala Y, Mason HS. Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine, 2005, 23(15): 1851-1858.[84] Pogrebnyak N, Golovkin M, Andrianov V, Spitsin S, Smirnov Y, Egolf R, Koprowski H. Severe acute respiratory syndrome (SARS) S protein production in plants: Development of recombinant vaccine. Proc Natl Acad Sci USA, 2005, 102(25): 9062-9067.[85] Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK. Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Rep, 2008, 27(2): 307-318.[86] Sharma MK, Jani D, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK. Expression of accessory colonization factor subunit A (ACFA) of Vibrio cholerae and ACFA fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). J Biotechnol, 2008, 135(1): 22-27.[87] Mor TS, Sternfeld M, Soreq H, Arntzen CJ, Mason HS. Expression of recombinant human acetylcholinesterase in transgenic tomato plants. Biotechnol Bioeng, 2001, 75(3): 259-266.[88] 陈溪, 林忠平. 利用转基因番茄生产人胰岛素的研究. 分子植物育种, 2003, 1(4): 81-83.[89] Gutiérrez-Ortega A, Sandoval-Montes C, de Olivera- Flores TJ, Santos-Argumedo L, Gómez-Lim MA. Expression of functional interleukin-12 from mouse in transgenic tomato plants. Transgenic Res, 2005, 14(6): 877-885.[90] Elías-López AL, Marquina B, Gutiérrez-Ortega A, Aguilar D, Gomez-Lim M, Hernández-Pando R. Transgenic tomato expressing interleukin-12 has a therapeutic effect in a murine model of progressive pulmonary tuberculosis. Clin Exp Immunol, 2008, 154(1): 123-133.[91] Zhang H, Zhao LX, Chen YH, Cui LJ, Ren WW, Tang KX. Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum). Biotechnol Appl Biochem, 2007, 48(2): 101-107.[92] Agarwal S, Singh R, Sanyal I, Amla DV. Expression of modified gene encoding functional human α-1-antitrypsin protein in transgenic tomato plants. Transgenic Res, 2008, 17(5): 881-896.[93] Chen HF, Chang MH, Chiang BL, Jeng ST. Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine, 2006, 24(15): 2944-2951.[94] Soria-Guerra RE, Rosales-Mendoza S, Márquez-Mercado C, López-Revilla R, Castillo-Collazo R, Alpuche-Solís ÁG. Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep, 2007, 26(7): 961-968.[95] Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, López-Revilla R, Alpuche-Solís ÁG. Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epitopes. Plant Cell Rep, 2011, 30(3): 417-424.[96] Zhi QW, Wang SH, Chai M, Zhang FY, Li Q, Li SG, Sun MJ. Transgenic Mini-tomato and protection against Alcohol-induced gastric Injury. J Genet Genomics, 2007, 34(8): 756-763.[97] Youm JW, Jeon JH, Kim H, Kim YH, Ko K, Joung H, Kim HS. Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease. Biotechnol Lett, 2008, 30(10): 1839-1845.[98] Chen YH, Wang A, Zhao LX, Shen GA, Cui LJ, Tang KX. Expression of thymosin α1 concatemer in transgenic tomato (Solanum lycopersicum) fruits. Biotechnol Appl Biochem, 2009, 52(4): 303-312.[99] 曹慧颖, 张锐, 郭三堆. 串联的人胸腺素α1 基因在番茄中的高效表达. 中国农业科学, 2009, 42(7): 2291-2296.[100] DellaPenna D. Transgenic tomato plants with altered polygalacturonase isoforms. United States Patent. 1996, US005569831A.[101] Atkinson HJ, Koritsas VM, Lee DL, Macgregor AN, Smith JE. Control of parasites. United States Patent. 1999, WO95/23229.[102] Fluhr R, Eshed Y, Ori N, Paran I, Zamir D. Transgenic tomato plants containing a Fusarium resistance gene. United States Patent, 2000, WO96/32007.[103] 林忠平, 倪挺, 陈溪, 胡鸢雷. 利用转基因番茄生产人胰岛素的方法. 2003, 公开号, CN1295129.[104] Gabriel DW, Reddy JD. Use of esterase genes as selectable markers for transforming plant cells. United States Patent, 2008, US20080235824A1.[105] De Vetten NCMH, Visser RGF, Jacobsen E, van der Vossen EAG, Wolters AMA. Use of R-genes as a selection marker in plant transformation and use of cisgenes in plant transformation. 2008, WO2008091154A1. (Source: USPTO)[106] Polston JE, Hiebert E. Materials and methods for producing tomato yellow leaf curl virus resistance in plants. 2009, US7531716. (Source: SIPO)[107] Wang K, Ryu CM, Mysore K. Modification of plant disease resistance. 2009, WO2009015079. (Source: USPTO) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: