[1] | Jenkins C. Use of the feral pigeon (Columba livia) to monitor atmospheric lead pollution. C R Acad Sci Hebd Seances Acad Sci D, 1975, 281(16): 1187-1189. | [2] | Anderson JL, Smith SC, Taylor RL Jr. The pigeon (Columba livia) model of spontaneous atherosclerosis. Poult Sci, 2014, 93(11): 2691-2699. | [3] | Levenson RM, Krupinski EA, Navarro VM, Wasserman EA. Pigeons (Columba livia) as trainable observers of pathology and radiology breast cancer images. PLoS One, 2015, 10(11): e0141357. | [4] | Gillespie MJ, Crowley TM, Haring VR, Wilson SL, Harper JA, Payne JS, Green D, Monaghan P, Donald JA, Nicholas KR, Moore RJ. Transcriptome analysis of pigeon milk production - role of cornification and triglyceride synthesis genes. BMC Genomics, 2013, 14: 169. | [5] | Liang Y, Jiang QL, Chen YT, Lu GQ. Pigeon milk composition and research on its secretion mechanism. China Poul, 2016, 38(20): 47-51. | [5] | 梁勇, 姜庆林, 陈益填, 卢桂强. 鸽乳成分及其分泌机制研究进展. 中国家禽, 2016, 38(20): 47-51. | [6] | Carr RH, James CM. Synthesis of adequate protein in the glands of the pigeon crop. Am J Physiol, 1931, 97: 227-231. | [7] | Reed LL, Mendel LB, Vickery HB. The nutritive properties of the "crop-milk" of pigeons. Am J Physiol, 1932, 102(2): 285-292. | [8] | Dayies WL. The composition of the crop milk of pigeons. Biochem J, 1939, 33(6): 898-901. | [9] | Ferrando R, Wolter R, Fourlon C, Morice M. Pigeon milk. Ann Nutr Aliment, 1971, 25(3): 241-251. | [10] | Leash AM, Liebman J, Taylor A, Limbert R. An analysis of the crop contents of White Carneaux pigeons (Columba livia), days one through twenty-seven. Lab Anim Sci, 1971, 21(1): 86-90. | [11] | Hegde SN. Composition of pigeon milk and its effect on growth in chicks. Indian J Exp Biol, 1973, 11(3): 238-239. | [12] | Shetty S, Salimath PV, Hegde SN. Carbohydrates of pigeon milk and their changes in the first week of secretion. Arch Int Physiol Biochim Biophys, 1994, 102(5): 277-280. | [13] | Shetty S, Shenoy KB, Jacob RT, Hegde SN. Mineral composition of pigeon milk. Experientia, 1990, 46(5): 449-451. | [14] | Shetty S, Bharathi L, Shenoy KB, Hegde SN. Biochemical properties of pigeon milk and its effect on growth. J Comp Physiol B, 1992, 162(7): 632-636. | [15] | Desmeth M, Vandeputte-Poma J. Lipid composition of pigeon cropmilk—I. Total lipids and lipid classes. Comp Biochem Phys B, 1980, 66(1): 129-133. | [16] | Goudswaard J, van der Donk JA, van der Gaag I, Noordzij A. Peculiar IgA transfer in the pigeon from mother to squab. Dev Comp Immunol, 1979, 3: 307-319. | [17] | Engberg RM, Kaspers B, Schranner I, K?sters J, L?sch U. Quantification of the immunoglobulin classes IgG and IgA in the young and adult pigeon (Columba livia). Avian Pathol, 1992, 21(3): 409-420. | [18] | Jacquin L, Blottière L, Haussy C, Perret S, Gasparini J. Prenatal and postnatal parental effects on immunity and growth in 'lactating' pigeons. Funt Ecol, 2012, 26(4): 866-875. | [19] | Shetty S, Hegde SN, Bharathi L. Purification of a growth factor from pigeon milk. Biochim Biophys Acta, 1992, 1117(2): 193-198. | [20] | Frelinger JA. Maternally derived transferrin in pigeon squabs. Science, 1971, 171(3977): 1260-1261. | [21] | Hegde SN. The amino-acid composition of pigeon milk. Curr Sci, 1972, 41: 23-24. | [22] | Pace DM, Landolt PA, Mussehl FE. The effect of pigeon crop-milk on growth in chickens. Growth, 1953, 16(4): 279-285. | [23] | Bharathi L, Shenoy KB, Hegde SN. In vivo and in vitro growth-stimulatory effects of pigeon milk. Comp Biochem Physiol Comp Physiol, 1994, 108(2-3): 451-459. | [24] | Shetty S, Hegde SN. Pigeon milk: A new source of growth factor. Experientia, 1993, 49(10): 925-928. | [25] | Shetty S, Hegde SN. Changes in lipids of pigeon “milk” in the first week of its secretion. Lipids, 1991, 26(11), 930-933. | [26] | Gibson RA, Kneebone GM. Fatty acid composition of human colostrum and mature breast milk. Am J Clin Nutr, 1981, 34(2): 252-257. | [27] | United Nations University/World Health Organization/ Food and Agriculture Organization. Human energy requirements: report of a joint FAO/ WHO/UNU Expert Consultation. Food Nutr Bull, 2005, 26(1): 166. | [28] | Shetty S, Sridhar KR, Shenoy KB, Hegde SN. Observations on bacteria associated with pigeon crop. Folia Microbiol, 1990, 35(3): 240-244. | [29] | Gillespie MJ, Stanley D, Chen HL, Donald JA, Nicholas KR, Moore RJ, Crowley TM. Functional similarities between pigeon ‘Milk’ and mammalian milk: Induction of immune gene expression and modification of the microbiota. PLoS One, 2012, 7(10): e48363. | [30] | Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A. Prebiotic effects: metabolic and health benefits. Br J Nutr, 2010, 104(S2): S1-S63. | [31] | Watson RR, Preedy VR eds. Bioactive Foods in Promoting Health. Boston: Academic Press, 2007, 441-477. | [32] | Poroyko V, White JR, Wang M, Donovan S, Alverdy J, Liu DC, Morowitz MJ. Gut microbial gene expression in mother-fed and formula-fed piglets. PLoS One, 2010, 5(8): e12459. | [33] | Sj?gren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, B?ckhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res, 2012, 27(6): 1357-1367. | [34] | Brisbin JT, Gong J, Sharif S. Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim Health Res Rev, 2008, 9(1): 101-110. | [35] | Zhou Q, Li MZ, Wang XY, Li QZ, Wang T, Zhu Q, Zhou XC, Wang X, Gao XL, Li XW. Immune-related MicroRNAs are abundant in breast milk exosomes. Int J Biol Sci, 2012, 8(1): 118-123. | [36] | Patricia TP. Exosomes from lung and breast milk - regulators of immune responses. Stockholm: Karolinska Institutet, 2014. | [37] | Gillespie M. Transcriptomic characterisation of pigeon ‘milk’ production and its effect on young[Dissertation]. Australia: Deakin University, 2012. | [38] | Horseman ND, Buntin JD. Regulation of pigeon cropmilk secretion and parental behaviors by prolactin. Annu Rev Nutr, 1995, 15: 213-238. | [39] | Litwer G. Die histologischen ver?nderungen der kropfwandung bei tauben, zur zeit der bebrütung und ausfütterung ihrer jungen. Z Zellforsch Mikrosk Anat, 1926, 3(4): 695-722. | [40] | Weber W. Zur histologie und cytologie der kropfmilchbildung der taube. Z Zellforsch Mikrosk Anat, 1962, 56(2): 247-276. | [41] | Riddle O, Bates RW, Dykshorn SW. The preparation, identification and assay of prolactin--a hormone of the anterior pituitary. Am J Physiol, 1933, 105: 191-216. | [42] | Dumont JN. Prolactin-induced cytologic changes in the mucosa of the pigeon crop during crop-"milk" formation. Z. Zellforsch Mikrosk Anat, 1965, 68(6): 755-782. | [43] | Abdel-Azeem, Abdel-Azeem F. The composition of the crop milk in Egyptian baladi pigeons and its role in growth of squabs. Egypt Poul Sci, 2010, 30(4): 1003-1015. | [44] | Kierończyk B, Rawski M, D?ugosz J, ?wi?tkiewicz S, Józefiak D. Avian crop function - a review. Ann Anim Sci, 2016, 16(3): 653-678. | [45] | Bharathi L, Shenoy KB, Hegde SN. Biochemical differences between crop tissue and crop milk of pigeons (Columba livia). Comp Biochem Phys A, 1997, 116(1): 51-55. | [46] | Gillespie MJ, Haring VR, McColl KA, Monaghan P, Donald JA, Nicholas KR, Moore RJ, Crowley TM. Histological and global gene expression analysis of the 'lactating' pigeon crop. BMC Genomics, 2011, 12: 452. | [47] | Zeigler DL. Crop-milk cycles in band-tailed pigeons and losses of squabs due to hunting pigeons in September [Dissertation]. Oregon State University, 1971. | [48] | Beams HW, Meyer RK. The formation of pigeon "milk". Physiol Biochem Zool, 1931, 4(3): 486-500. | [49] | Chen LG, Wu GS, Ge JZ. Histological observation on the crop variation of meat pigeon in different reproductive cycle. J Zhejiang Agric Univ, 1993, 19(4): 459-462. | [49] | 陈莲官, 吴高升, 葛姣珍. 不同繁殖时期肉鸽嗉囊变化规律的组织学观察. 浙江农业大学学报, 1993, 19(4): 459-462. | [50] | Garrison MM, Scow RO. Effect of prolactin on lipoprotein lipase in crop sac and adipose tissue of pigeons. Am J Physiol, 1975, 228(5): 1542-1544. | [51] | Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med, 2002, 80(12): 753-769. | [52] | Horseman ND, Will CL. Characterization of lipid storage associated proteins induced in crop tissue by prolactin. J Comp Physiol B, 1984, 154(3): 237-242. | [53] | Zhao WS, Hu SL, Yu K, Wang H, Wang W, Loor J, Luo J. Lipoprotein lipase, tissue expression and effects on genes related to fatty acid synthesis in goat mammary epithelial cells. Int J Mol Sci, 2014, 15(12): 22757-22771. | [54] | Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, Stein T, Anderson SM, Neville MC. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics, 2007, 28(3): 323-336. | [55] | Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, Haymond MW. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics, 2008, 37(1): 12-22. | [56] | Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashi Y, Sassa T, Kihara A. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci USA, 2010, 107(43): 18439-18444. | [57] | Arriola Apelo SI, Singer LM, Ray WK, Helm RF, Lin XY, McGilliard ML, St-Pierre NR, Hanigan MD. Casein synthesis is independently and additively related to individual essential amino acid supply. J Dairy Sci, 2014, 97(5): 2998-3005. | [58] | Chiu M, Tardito S, Barilli A, Bianchi MG, Dall’Asta V, Bussolati O. Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids, 2012, 43(6): 2561-2567. | [59] | Wang X, Sun DF, Fang JY. Research advances on the relationship of PI3-Kinase/Akt/Mtor pathway and epigenetic modification. Hereditas (Beijing), 2006, 28(12): 1585-1590. | [59] | 王霞, 孙丹凤, 房静远. mTOR信号途径与表观遗传关系的研究进展. 遗传, 2006, 28(12): 1585-1590. | [60] | Appuhamy JADRN, Bell AL, Nayananjalie WAD, Escobar J, Hanigan MD. Essential amino acids regulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices. J Nutr, 2011, 141(6): 1209-1215. | [61] | Hu XC, Gao CQ, Wang XH, Yan HC, Chen ZS, Wang XQ. Crop milk protein is synthesised following activation of the IRS1/Akt/TOR signalling pathway in the domestic pigeon (Columba livia). Br Poult Sci, 2016, 57(6): 855-862. | [62] | Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from rodents about prolactin in humans?. Endocr Rev, 2008, 29(1): 1-41. | [63] | Lepp? S, Sistonen L. Heat shock response—pathophysiological implications. Ann Med, 1997, 29(1): 73-78. | [64] | Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002, 295(5561): 1852-1858. | [65] | Sun BG, Fujiwara K, Adachi S, Inoue K. Physiological roles of prolactin-releasing peptide. Regul Pept, 2005, 126(1-2): 27-33. | [66] | Fang DA, Geng ZY, Zhang XR, Liu WY, Chen XY. Review on fowl prolactin. Prog Vet Med, 2005, 26(1): 22-24. | [66] | 方弟安, 耿照玉, 章孝荣, 刘武艺, 陈兴勇. 禽类催乳素研究进展. 动物医学进展, 2005, 26(1): 22-24. | [67] | Fitzgerald P, Dinan TG. Prolactin and dopamine: what is the connection? A review article. J Psychopharmacol, 2008, 22(2): 12-19. | [68] | Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev, 2000, 80(4): 1523-1631. | [69] | Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev, 2013, 19(3): 225-268. | [70] | Moustafa RM, Moustafa KM, Mirghani Z, Moustafa YM. Prolactin hormone and cardiovascular system. Cardiol Angiol Int J, 2014, 2(1): 49-61. | [71] | Keenan TW, Saacke RG, Patton S. Prolactin, the Golgi apparatus, and milk secretion: Brief interpretive review. J Dairy Sci, 1970, 53(10): 1349-1352. | [72] | Riddle O, Bates WR, Dykshorn WS. A new hormone of the anterior pituitary. Exp Biol Med, 1932, 29(9): 1211-1212. | [73] | Riddle O. Studies on the physiology of reproduction in birds. Am J Physiol, 1930, 94: 535-547. | [74] | Nicoll CS, Bern HA. Further analysis of the occurrence of pigeon crop sac-stimulating activity (Prolactin) in the vertebrate adenohypophysis. Gen Comp Endocrinol, 1968, 11(1): 5-20. | [75] | Pukac LA, Horseman ND. Regulation of pigeon crop gene expression by prolactin. Endocrinology, 1984, 114(5): 1718-1724. | [76] | Rillema JA eds. Actions of prolactin on molecular processes. Boca Raton: CRC Press, 1987. | [77] | Buntin JD, Forsyth IA. Measurements of pituitary prolactin levels in breeding pigeons by crop sac radioreceptor assay. Gen Comp Endocrinol, 1979, 37(1): 57-63. | [78] | Buntin JD, Buntin L. Increased STAT5 signaling in the ring dove brain in response to prolactin administration and spontaneous elevations in prolactin during the breeding cycle. Gen Comp Endocrinol, 2014, 200: 1-9. | [79] | Pukac LA, Horseman ND. Regulation of cloned prolactin-inducible genes in pigeon crop. Mol Endocrinol, 1987, 1(2): 188-194. | [80] | Gao YL, Horseman ND. Structural and functional divergences of the columbid annexin I-encoding cp37 and cp35 genes. Gene, 1994, 143(2): 179-186. | [81] | Sidis Y, Horseman ND. Prolactin induces rapid p95/p70 tyrosine phosphorylation, and protein binding to GAS-like sites in the anx Icp35 and c-fos genes. Endocrinology, 1994, 134(4): 1979-1985. | [82] | Haigler HT, Mangili JA, Gao Y, Jones J, Horseman ND. Identification and characterization of columbid annexin Icp37. Insights into the evolution of annexin I phosphorylation sites. J Biol Chem, 1992, 267(27): 19123-19129. | [83] | Futter CE, Felder S, Schlessinger J, Ullrich A, Hopkins CR. Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J Cell Biol, 1993, 120(1): 77-83. | [84] | Emans N, Gorvel JP, Walter C, Gerke V, Kellner R, Griffiths G, Gruenberg J. Annexin II is a major component of fusogenic endosomal vesicles. J Cell Biol, 1993, 120(6): 1357-1369. | [85] | Horseman ND. A prolactin-inducible gene product which is a member of the calpactin/lipocortin family. Mol Endocrinol, 1989, 3(5): 773-779. | [86] | Horseman ND, Nollin LJ. The mitogenic, but not differentiative, response of crop tissue to prolactin is circadian phase dependent. Endocrinology, 1985, 116(5): 2085-2089. | [87] | Hirvonen A. Ornithine decarboxylase activity and the accumulation of its mRNA during early stages of liver regeneration. Biochim Biophys Acta, 1989, 1007(1): 120-123. | [88] | Beyer HS, Zieve L. Effects of partial and sham hepatectomy on ornithine decarboxylase and thymidine kinase activities and mRNA contents. Biochem Int, 1990, 20(4): 761-765. | [89] | Nishiguchi Y, Hibasami H, Komada Y, Sakurai M, Nakashima K. Human promyelocytic cell line hl60 has the specific binding sites for prolactin and its ornithine decarboxylase, dna synthesis and cellular proliferation are induced by prolactin. Leuk Res, 1993, 17(8): 633-637. | [90] | Bani G, Sacchi TB, Bigazzi M. Response of the pigeon crop sac to mammotrophic hormones: comparison between relaxin and prolactin. Gen Comp Endocrinol, 1990, 80(1): 16-23. | [91] | Qureshi TN, Rathore HS. Circadian phase relation of serotonin and dopamine influences reproductive conditions in domestic pigeon, Columba livia domestica. Indian J Sci Res, 2013, 4(2): 37-40. | [92] | Takeda K, Yasumoto KI, Takada R, Takada S, Watanabe KI, Udono T, Saito H, Takahashi K, Shibahara S. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem, 2000, 275(19): 14013-14016. | [93] | Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature, 1998, 391(6664): 298-301. | [94] | Pitts A, Dailey K, Newington JT, Chien A, Arseneault R, Cann T, Thompson LM, Cumming RC. Dithiol-based compounds maintain expression of antioxidant protein peroxiredoxin 1 that counteracts toxicity of mutant huntingtin. J Biol Chem, 2012, 287(27): 22717-22729. | [95] | Kowalska MA, Rauova L, Poncz M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb Res, 2010, 125(4): 292-296. | [96] | Vanhoutteghem A, Londero T, Djian P, Ghinea N. Serial cultivation of chicken keratinocytes, a composite cell type that accumulates lipids and synthesizes a novel β-keratin. Differentiation, 2004, 72(4): 123-137. | [97] | Greenwold MJ, Sawyer RH. Genomic organization and molecular phylogenies of the beta (β) keratin multigene family in the chicken (Gallus gallus) and zebra finch(Taeniopygia guttata): implications for feather evolution. BMC Evol Biol, 2010, 10: 148. | [98] | Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan HL, Campbell M, Tan H, Huff CD, Hu HF, Vickrey AI, Nielsen SCA, Stringham SA, Hu H, Willerslev E, Gilbert MTP, Yandell M, Zhang GJ, Wang J. Genomic diversity and evolution of the head crest in the rock pigeon. Science, 2013, 339(6123): 1063-1067. | [99] | Damas J, O'Connor R, Farré M, Lenis VPE, Martell HJ, Mandawala A, Fowler K, Joseph S, Swain MT, Griffin DK, Larkin DM. Upgrading short read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res, 2016, 27(5): 875-884. |
|