[1] | Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30(2): 174-178. | [2] | Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N, Kamoun S, Terauchi R. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol, 2015, 33(5): 445-449. | [3] | Gai JY, Zhang YM, Wang JK. Genetic System of Quantitative Traits In Plants. Beijing: Science Press, 2003. | [3] | 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003. | [4] | Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (. Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet, 2003, 107(5): 864-874. | [5] | Pierce LK, Wehner TC. Review of genes and linkage groups in cucumber. HortScience, 1990, 25(6): 605-615. | [6] | Serquen FC, Bacher J, Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed, 1997, 3(4): 257-268. | [7] | Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, Yuan XJ, Zhu LH, Huang SW, Cai R. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet, 2012, 124(2): 249-259. | [8] | Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32(3): 314-331. | [9] | Jarne P, Lagoda PJL. Microsatellites, from molecules to populations and back. Trends Ecol Evol, 1996, 11(10): 424-429. | [10] | Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832. | [11] | Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, J?rgensen JE, Weigel D, Andersen SU. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods, 2009, 6(8): 550-551. | [12] | Hazen SP, Borevitz JO, Harmon FG, Pruneda-Paz JL, Schultz TF, Yanovsky MJ, Liljegren SJ, Ecker JR, Kay SA. Rapid array mapping of circadian clock and developmental mutations in Arabidopsis. Plant Physiol, 2005, 138(2): 990-997. | [13] | Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS One, 2013, 8(7): e68529. | [14] | Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R. MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol, 2013, 200(1): 276-283. | [15] | Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74(1): 174-183. | [16] | Schneeberger K, Weigel D. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Science, 2011, 16(5): 282-288. | [17] | Fang XJ, Wu WR, Tang JL. DNA Marker Assisted Selection in Crop Breeding. Beijing: Science Press, 2002: 1-9. | [17] | 方宣钧, 吴为人, 唐纪良. 作物DNA标记辅助育种. 北京: 科学出版社, 2002: 1-9. | [18] | Lu CR, Zou CS, Song GL. Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches. Hereditas (Beijing), 2015, 37(8): 765-776. | [18] | 陆才瑞, 邹长松, 宋国立. 高通量测序技术结合正向遗传学手段在基因定位研究中的应用. 遗传, 2015, 37(8): 765-776. | [19] | Xi ZY, Zhu FJ, Tai GQ, Li ZM. Principle and methodology of QTL analysis in crop. Chin Agri Sci Bull, 2005, 21(1): 88-92, 99. | [19] | 席章营, 朱芬菊, 台国琴, 李志敏. 作物QTL分析的原理与方法. 中国农学通报, 2005, 21(1): 88-92, 99. | [20] | Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M. Genes offering the potential for designing yield-related traits in rice. Curr Opin Plant Biol, 2013, 16(2): 213-220. | [21] | Robertson DS. A possible technique for isolating genic DNA for quantitative traits in plants. J Theor Biol, 1985, 117(1): 1-10. | [22] | Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang AH, Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang T, Zhou TY, Jing YF, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li JY, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42(11): 961-967. | [23] | Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, Zeng P, Wang SH, Shang Y, Gu XF, Du YC, Li Y, Lin T, Yuan JH, Yang XY, Chen JF, Chen HM, Xiong XY, Huang K, Fei ZJ, Mao LY, Tian L, St?dler T, Renner SS, Kamoun S, Lucas WJ, Zhang ZH, Huang SW. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet, 2013, 45(12): 1510-1515. | [24] | Schmid KJ, S?rensen TR, Stracke R, T?rjék O, Altmann T, Mitchell-Olds T, Weisshaar B. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res, 2003, 13(6A): 1250-1257. | [25] | Yuan JH, Li JH, Huang XC, Li S, Gao WJ. Advance of SNP analysis based on whole genome resequencing in crop gene mapping. Plant Physiol J, 2015, 51(9): 1400-1404. | [25] | 袁金红, 李俊华, 黄小城, 李莎, 高武军. 基于全基因组重测序的SNP分析在作物基因定位中的研究进展. 植物生理学报, 2015, 51(9): 1400-1404. | [26] | Lin T, Wang SH, Zhong Y, Gao DL, Cui QZ, Chen HM, Zhang ZH, Shen HL, Weng YQ, Huang SW. A truncated F-box protein confers the dwarfism in cucumber. J Genet Genomics, 2016, 43(4): 223-226. | [27] | Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet, 2014, 127(7): 1491-1499. | [28] | Lun YY, Wang X, Zhang CZ, Yang L, Gao DL, Chen HM, Huang SW. A CsYcf54 variant conferring light green coloration in cucumber. Euphytica, 2016, 208(3): 509-517. | [29] | Zhou Q, Wang SH, Hu BW, Chen HM, Zhang ZH, Huang SW. An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber. J Integr Plant Biol, 2015, 57(11): 936-942. | [30] | Chen ZF, Yan W, Wang N, Zhang WH, Xie G, Lu JW, Jian ZH, Liu DF, Tang XY. Cloning of a rice male sterility gene by a modified MutMap method. Hereditas (Beijing), 2014, 36(1): 85-93. | [30] | 陈竹锋, 严维, 王娜, 张文辉, 谢刚, 卢嘉威, 简智华, 刘东风, 唐晓艳. 利用改进的MutMap方法克隆水稻雄性不育基因. 遗传, 2014, 36(1): 85-93. | [31] | Han XB, Xu R, Duan PG, Yu HY, Luo YH, Li YH. Genetic analysis and identification of candidate genes for two spotted-leaf mutants (spl101 and spl102) in rice. Hereditas (Beijing), 2017, 39(4): 346-353. | [31] | 韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定. 遗传, 2017, 39(4): 346-353. | [32] | Deng LC, Qin P, Liu Z, Wang GL, Chen WL, Tong JH, Xiao LT, Tu B, Sun YT, Yan W, He H, Tan J, Chen XW, Wang YP, Li SG, Ma BT. Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiol Biochem, 2017, 111: 50-58. | [33] | Lee YK, Woo M-O, Lee D, Lee G, Kim B, Koh HJ. Identification of a novel candidate gene for rolled leaf in rice. Genes Genomics, 2016, 38(11): 1077-1084. | [34] | Hu YG, Guo LA, Yang GT, Qin P, Fan CL, Peng YL, Yan W, He H, Li SG. Genetic analysis of dense and erect panicle 2 allele DEP2-1388 and its application in hybrid rice breeding. Hereditas (Beijing), 2016, 38(1): 72-81. | [34] | 胡云高, 郭连安, 杨国涛, 钦鹏, 范存留, 彭友林, 严维, 何航, 李仕贵. 直立密穗基因DEP2-1388的遗传分析及在杂交稻中的育种利用. 遗传, 2016, 38(1): 72-81. | [35] | Megersa A, Lee D, Park J, Koh HJ. Genetic mapping of a rice loose upper panicle mutant. Plant Breed Biotech, 2015, 3(4): 366-375. | [36] | Wang X, Gao DL, Sun JJ, Liu M, Lun YY, Zheng JS, Wang SH, Cui QZ, Wang XF, Huang SW. An exon skipping in a SEPALLATA-Like gene is associated with perturbed floral and fruits development in cucumber. J Integr Plant Biol, 2016, 58(9): 766-771. | [37] | Lindner H, Raissig MT, Sailer C, Shimosato-Asano H, Bruggmann R, Grossniklaus U. SNP-Ratio Mapping ( SRM): identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics, 2012, 191(4): 1381-1386. | [38] | Wei QZ, Fu WY, Wang YZ, Qin XD, Wang J, Li J, Lou QF, Chen JF. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep, 2016, 6: 27496. | [39] | Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res, 2015, 22(3): 193-203. | [40] | Masumoto H, Takagi H, Mukainari Y, Terauchi R, Fukunaga K. Genetic analysis of NEKODE1 gene involved in panicle branching of foxtail millet, Setaria italica(L.) P. Beauv., and mapping by using QTL-seq. Mol Breed, 2016, 36: 59. | [41] | Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Kumar CVS, Parupalli S, Vechalapu S, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK. Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea(Cajanus cajan). Plant Biotechnol J, 2016, 14(5): 1183-1194. | [42] | Yang ZM, Huang DQ, Tang WQ, Zheng Y, Liang KJ, Cutler AJ, Wu WR. Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high- throughput sequencing of pooled extremes. PLoS One, 2013, 8(7): e68433. | [43] | Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D, Zhang JF, Fung P, Gong YC, Wang PW, McCourt P, Guttman DS. Next-generation mapping of Arabidopsis genes. Plant J, 2011, 67(4): 715-725. | [44] | Schneeberger K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet, 2014, 15(10): 662-676. | [45] | Uchida N, Sakamoto T, Kurata T, Tasaka M. Identification of EMS-induced causal mutations in a non-reference Arabidopsis thaliana accession by whole genome sequencing. Plant Cell Physiol, 2011, 52(4): 716-722. | [46] | Allen RS, Nakasugi K, Doran RL, Millar AA, Waterhouse PM. Facile mutant identification via a single parental backcross method and application of whole genome sequencing based mapping pipelines. Front Plant Sci, 2013, 4: 362. | [47] | The International Wheat Genome Sequencing Consortium ( IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345(6194): 1251788. | [48] | Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels RD, Pfeifer M, Tao Y, Zhang XY, Jing RL, Zhang C, Ma YZ, Gao LF, Gao CA, Spannagl M, Mayer KFX, Li D, Pan SK, Zheng FY, Hu Q, Xia XC, Li JW, Liang QS, Chen J, Wicker T, Gou CY, Kuang HH, He GY, Luo YD, Keller B, Xia QJ, Lu P, Wang JY, Zou HF, Zhang RZ, Xu JY, Gao JL, Middleton C, Quan ZW, Liu GM, Wang J, International Wheat Genome Sequencing Consortium, Yang HM, Liu X, He ZH, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496(7443): 91-95. | [49] | Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Wu HJ, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YP, An XL, Dong ZY, Zhang KP, Zhang XQ, Luo MC, Dvorak J, Tong YP, Wang J, Yang HM, Li ZS, Wang DW, Zhang AM, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496(7443): 87-90. | [50] | Li FG, Fan GY, Lu C, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33(5): 524-530. | [51] | Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Dole?el J, Keller B, Wulff BBH. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol, 2016, 17(1): 221. | [52] | Mithra SVA, Kar MK, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh K, Singh AK, Singh NK, Sharma RP. DBT propelled national effort in creating mutant resource for functional genomics in rice. Curr Sci, 2016, 110(4): 543-548. | [53] | Na R, Yu D, Chapman BP, Zhang Y, Kuflu K, Austin R, Qutob D, Zhao J, Wang YC, Gijzen M. Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus. PLoS One, 2014, 9(2): e89738. | [54] | Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV, Vasquez-Gross H, Akhunova A, Akhunov E, Dubcovsky J, Tai TH, Comai L. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell, 2014, 26(4): 1382-1397. | [55] | Wei FJ, Droc G, Guiderdoni E, Hsing YIC. International Consortium of Rice Mutagenesis: resources and beyond. Rice, 2013, 6(1): 39. | [56] | Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K, Machita K, Watanabe S, Nishimura M, Yamada N, Mori S, Sasaki H, Kanamori H, Katayose Y, Ishimoto M. Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genomics, 2015, 16: 1014. | [57] | Just D, Garcia V, Fernandez L, Bres C, Mauxion JP, Petit J, Jorly J, Assali J, Bournonville C, Ferrand C, Baldet P, Lemaire-Chamley M, Mori K, Okabe Y, Ariizumi T, Asamizu E, Ezura H, Rothan C. Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato. Plant Biotechnol, 2013, 30(3): 225-231. | [58] | Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O. CloudMap: A cloud-based pipeline for analysis of mutant genome sequences. Genetics, 2012, 192(4): 1249-1269. | [59] | Etherington GJ, Monaghan J, Zipfel C, MacLean D. Mapping mutations in plant genomes with the user-friendly web application CandiSNP. Plant Methods, 2014, 10: 41. | [60] | Iida N, Yamao F, Nakamura Y, Iida T. Mudi, a web tool for identifying mutations by bioinformatics analysis of whole-genome sequence. Genes Cells, 2014, 19(6): 517-527. | [61] | Sun HQ, Schneeberger K. SHOREmap v3.0: Fast and accurate identification of causal mutations from forward genetic screens. Methods Mol Biol, 2015, 1284: 381-395. |
|