[1] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996,93(3):1156-1160. | [2] | Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U . Breaking the code of DNA binding specificity of TAL-typeⅢeffectors. Science, 2009,326(5959):1509-1512. | [3] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [4] | Xu S, Cao S, Zou B, Yue Y, Gu C, Chen X, Wang P, Dong X, Xiang Z, Li K, Zhu M, Zhao Q, Zhou G . An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease. Genome Biol, 2016,17(1):186. | [5] | Huang YQ, Li GL, Yang HQ, Wu ZF . Progress and application of genome-edited pigs in biomedical research. Hereditas(Beijing), 2018,40(8):632-646. | [5] | 黄耀强, 李国玲, 杨化强, 吴珍芳 . 基因编辑猪在生物医学研究中的应用. 遗传, 2018,40(8):632-646. | [6] | Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A . DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 2000,404(6777):510-514. | [7] | Capecchi MR . Altering the genome by homologous recombination. Science, 1989,244(4910):1288-1292. | [8] | Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis G . High- frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods, 2011,8(9):753-755. | [9] | Shen B, Zhang X, Du Y, Wang J, Gong J, Zhang X, Tate PH, Li H, Huang X, Zhang W . Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes. PLoS One, 2013,8(10):e77696. | [10] | Hu Z, Shi Z, Guo X, Jiang B, Wang G, Luo D, Chen Y, Zhu YS . Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci, 2018,8(1):12. | [11] | Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schäfer AJ, Floor SN, Corn JE . CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet, 2018,50(8):1132-1139. | [12] | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL . Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015,33(5):538-542. | [13] | Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, Ji J, Guo X, Huang J, Feng XH, Fu J, Zhu S . Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun, 2018,9(1):1303. | [14] | Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R . Increasing the efficiency of homology- directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol, 2015,33(5):543-548. | [15] | Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Liu D, Li Z, Yang H, Wu Z . Small molecules enhance CRISPR/ Cas9-mediated homology-directed genome editing in primary cells. Sci Rep, 2017,7(1):8943. | [16] | Gerlach M, Kraft T, Brenner B, Petersen B, Niemann H, Montag J . Efficient Knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9-GMNN fusion gene. Genes, 2018,9(6):296. | [17] | Li GL, Zhong CL, Mo JX, Quan R, Wu ZF, Li ZC, Yang HQ, Zhang XW . Advances in site-specific integration of transgene in animal genome. Hereditas(Beijing), 2017,39(2):98-109. | [17] | 李国玲, 钟翠丽, 莫健新, 全绒, 吴珍芳, 李紫聪, 杨化强, 张献伟 . 动物基因组定点整合转基因技术研究进展. 遗传, 2017,39(2):98-109. | [18] | Hao P Q, An S, Yang Y, Liu Y, Guo XX, Xu TR . The progress on MEK kinases and their inhibitors. Chin J Cell Biol, 2015,37(10):1425-1431. | [18] | 郝佩琪, 安输, 杨洋, 刘莹, 郭晓汐, 徐天瑞 . MEK激酶及其抑制剂的研究进展. 中国细胞生物学学报, 2015,37(10):1425-1431. | [19] | Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E . MEK in cancer and cancer therapy. Pharmacol Therapeut, 2014,141(2):160-171. | [20] | Zhao Y, Adjei AA . The clinical development of MEK inhibitors. Nat Rev Clin Oncol, 2014,11(7):385-400. | [21] | Lin Z, Zhang Y, Gao T, Wang L, Zhang Q, Zhou J, Zhao J . Homologous recombination efficiency enhanced by inhibition of MEK and GSK3β. Genesis, 2014,52(11):889-896. | [22] | Roberts RG . Dystrophin, its gene, and the dystrophinopathies. Adv Genet, 1995,33:177-231. | [23] | Li X, Yang Y, Bu L, Guo X, Tang C, Song J, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yi X, Quan L, Liu S, Yang Z, Ouyang H, Chen YE, Wang Z, Lai L . Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res, 2014,24(4):501-504. | [24] | Li G, Liu D, Zhang X, Quan R, Zhong C, Mo J, Huang Y, Wang H, Ruan X, Xu Z, Zheng E, Gu T, Hong L, Li Z, Wu Z, Yang H . Suppressing Ku70/Ku80 expression elevates homology-directed repair efficiency in primary fibroblasts. Int J Biochem Cell Bi, 2018,99:154-160. | [25] | Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL . CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015,10(4):e0124633. | [26] | Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D . Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Rese, 2018,46(3):1375-1385. | [27] | Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M . Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep, 2016,6:21264. | [28] | Lin S, Staahl BT, Alla RK, Doudna JA . Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014,3:e04766. | [29] | Weber JD, Raben DM, Phillips PJ, Baldassare JJ . Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J, 1997,326(Pt 1):61-68. | [30] | Wang S, Wang S, Zhu XG, Zhang JQ, Qiao XM, Ye YJ, Liang B, Ma XT, Cui ZR . Significance of MEK-ERK cascade in the development of human breast carcinoma. Chin J Surg, 2002,40(3):171-174. | [30] | 王殊, 王杉, 祝学光, 张嘉庆, 乔新民, 叶颖江, 梁斌, 马向涛, 崔志荣 . 细胞外信号调节激酶及其上游激酶在人乳腺癌发生发展中的意义. 中华外科杂志, 2002,40(3):171-174. | [31] | Ayub A, Yip WK, Seow HF . Dual treatments targeting IGF-1R, PI3K, mTORC or MEK synergize to inhibit cell growth, induce apoptosis, and arrest cell cycle at G1 phase in MDA-MB-231 cell line. Biomed Pharmacother, 2015,75:40-50. | [32] | Chiruvella KK, Liang Z, Wilson TE . Repair of double- strand breaks by end joining. CSH Perspect Biol, 2013,5(5):a012757. | [33] | Karanam K, Kafri R, Loewer A, Lahav G . Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell, 2012,47(2):320-329. | [34] | Branzei D, Foiani M . Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Bio, 2008,9(4):297-308. | [35] | Ceccaldi R, Rondinelli B, D'Andrea AD . Repair pathway choices and consequences at the Double-Strand break. Trends Cell Biol, 2015,26(1):52-64. | [36] | Li X, Heyer WD . Homologous recombination in DNA repair and DNA damage tolerance. Cell Res, 2008,18(1):99-113. | [37] | Kachhap SK, Rosmus N, Collis SJ, Kortenhorst MS, Wissing MD, Hedayati M, Shabbeer S, Mendonca J, Deangelis J, Marchionni L, Lin J, Höti N, Nortier JW, DeWeese TL, Hammers H, Carducci MA . Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS One, 2010,5(6):e11208. |
|