遗传 ›› 2019, Vol. 41 ›› Issue (12): 1110-1118.doi: 10.16288/j.yczz.19-232
朱艳1, 张进威1, 齐婧1, 李学伟1, 陈磊2, 李明洲1, 马继登1()
收稿日期:
2019-08-08
修回日期:
2019-10-25
出版日期:
2019-12-20
发布日期:
2019-12-05
通讯作者:
马继登
E-mail:jideng.ma@sicau.edu.cn
作者简介:
朱艳,硕士研究生,专业方向:动物遗传育种与繁殖。E-mail:zhuyan_494062079@163.com
基金资助:
Yan Zhu1, Jinwei Zhang1, Jing Qi1, Xuewei Li1, Lei Chen2, Mingzhou Li1, Jideng Ma1()
Received:
2019-08-08
Revised:
2019-10-25
Online:
2019-12-20
Published:
2019-12-05
Contact:
Ma Jideng
E-mail:jideng.ma@sicau.edu.cn
Supported by:
摘要:
骨骼肌形成是一个复杂的生理过程,主要涉及肌源性干细胞增殖形成成肌细胞,进而分化、融合形成多核肌管。研究发现,有多种蛋白参与成肌细胞融合过程,但它们均不具有肌肉特异性。近年来,两种肌肉特异性膜蛋白Myomaker和Myomerger先后被发现和鉴定,它们能协调促进成肌细胞融合,从而参与骨骼肌形成过程。本文对成肌过程中Myomaker和Myomerger的表达模式、功能域等研究现状及其参与成肌细胞的融合机制进行了综述,旨在为深入研究骨骼肌形成过程及治疗肌细胞融合相关疾病提供参考信息。
朱艳, 张进威, 齐婧, 李学伟, 陈磊, 李明洲, 马继登. Myomaker和Myomerger调控成肌细胞融合的分子机制[J]. 遗传, 2019, 41(12): 1110-1118.
Yan Zhu, Jinwei Zhang, Jing Qi, Xuewei Li, Lei Chen, Mingzhou Li, Jideng Ma. Molecular regulation mechanism of Myomaker and Myomerger in myoblast fusion[J]. Hereditas(Beijing), 2019, 41(12): 1110-1118.
表1
常见物种Myomaker和Myomerger基因结构"
基因 | 物种 | 染色体位置 | 可变剪 接体数 | 转录ID | 外显 子数 | 转录长度 (bp) | 翻译长度 (aa) | 参考文献 |
---|---|---|---|---|---|---|---|---|
Myomaker | 小鼠 (M. musculus) | Chr.2:27061636-27072179 | 2 | ENSMUST00000009358.2 | 5 | 1382 | 221 | [ |
ENSMUST00000163967.1 | 5 | 1210 | 180 | |||||
人 (H. sapiens) | Chr.9:136379708-136393734 | 2 | ENST00000339996.3 | 5 | 818 | 221 | [ | |
ENST00000413714.1 | 0 | 531 | - | |||||
斑马鱼 (D. rerio) | Chr.5:68934948-68940186 | 2 | ENSDART00000033962.6 | 5 | 663 | 220 | [ | |
ENSDART00000138519.1 | 1 | 258 | 45 | |||||
鸡 (G. gallus) | Chr.17:6958313-6965254 | 1 | ENSGALT00000034784.3 | 5 | 1078 | 220 | [ | |
Myomerger | 小鼠 (M. musculus) | Chr.17: 45600967-45602102 | 3 | ENSMUST00000113529.2 | 1 | 811 | 84 | [ |
ENSMUST00000169137.1 | 2 | 852 | 18 | |||||
ENSMUST00000178858.1 | 1 | 808 | 84 | |||||
大鼠 (R. norvegicus) | Chr.9: 16670994-16671263 | 1 | ENSRNOT00000064497.2 | 1 | 270 | 89 | - | |
人 (H. sapiens) | Chr.6: 44216939-44218236 | 2 | ENST00000573382.2 | 1 | 817 | 84 | - | |
ENST00000576476.1 | 1 | 682 | 84 |
[1] |
Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017,356(6335):323-327.
doi: 10.1126/science.aam9361 pmid: 28386024 |
[2] |
Bentzinger CF, Wang YX, Rudnicki MA . Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol, 2012,4(2):441-441.
doi: 10.18632/aging.101904 pmid: 30996129 |
[3] |
Rochlin K, Yu S, Roy S, Baylies MK . Myoblast fusion: when it takes more to make one. Dev Biol, 2010,341(1):66-83.
doi: 10.1016/j.ydbio.2009.10.024 pmid: 19932206 |
[4] |
Doles JD, Olwin BB . Muscle stem cells on the edge. Curr Opin Genet Dev, 2015,34:24-28.
doi: 10.1016/j.gde.2015.06.006 pmid: 26189082 |
[5] |
Millay DP, O'Rourke JR, Sutherland LB, Bezprozvannaya S, Shelton JM, Bassel-Duby R, Olson EN. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 2013,499(7458):301-305.
doi: 10.1038/nature12343 pmid: 23868259 |
[6] |
Millay DP, Gamage DG, Quinn ME, Min YL, Mitani Y, Bassel-Duby R, Olson EN . Structure-function analysis of myomaker domains required for myoblast fusion. Proc Natl Acad Sci USA, 2016,113(8):2116-2121.
doi: 10.1073/pnas.1600101113 pmid: 26858401 |
[7] |
Millay DP, Sutherland LB, Bassel-Duby R, Olson EN . Myomaker is essential for muscle regeneration. Genes Dev, 2014,28(15):1641-1646.
doi: 10.1101/gad.247205.114 pmid: 25085416 |
[8] |
Zhang Q, Vashisht AA, O’Rourke J, Corbel SY, Moran R, Romero A, Miraglia L, Zhang J, Durrant E, Schmedt C, Sampath SC. The microprotein Minion controls cell fusion and muscle formation. Nat Commun, 2017,8:15664.
doi: 10.1038/ncomms15664 pmid: 28569745 |
[9] |
Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V, Millay DP . Myomerger induces fusion of non- fusogenic cells and is required for skeletal muscle development. Nat Commun, 2017,8(8):15665.
doi: 10.1038/ncomms15665 pmid: 28569755 |
[10] |
Pavlath GK, Horsley V . Cell fusion in skeletal muscle: central role of NFATC2 in regulating muscle cell size. Cell Cycle, 2003,2(5):419-422.
pmid: 12963831 |
[11] |
Borello U, Berarducci B, Murphy P, Bajard L, Buffa V, Piccolo S, Buckingham M, Cossu G . The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development, 2006,133(18):3723.
doi: 10.1242/dev.02517 pmid: 16936075 |
[12] |
Chargé SB, Rudnicki MA . Cellular and molecular regulation of muscle regeneration. Physiol Rev, 2004,84(1):209-238.
doi: 10.1152/physrev.00019.2003 pmid: 14715915 |
[13] |
Si YF, Wen HS, Du SJ . Genetic mutations in jamb, jamc, and myomaker revealed different roles on myoblast fusion and muscle growth. Mar Biotechnol, 2019,21(1):111-123.
doi: 10.1007/s10126-018-9865-x pmid: 30467785 |
[14] |
Yafe A, Shklover J, Weisman-Shomer P, Bengal E, Fry M . Differential binding of quadruplex structures of muscle- specific genes regulatory sequences by MyoD, MRF4 and myogenin. Nucleic Acids Res, 2008,36(12):3916.
doi: 10.1093/nar/gkn340 pmid: 18511462 |
[15] |
Berkes CA, Tapscott SJ . MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol, 2005,16(4):585-595.
doi: 10.1038/s41419-019-1993-3 pmid: 31601787 |
[16] |
Charrasse S, Comunale F, Fortier M, Portales-Casamar E, Debant A, Gauthier-Rouvière C . M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol Biol Cell, 2007,18(5):1734-1743.
doi: 10.1091/mbc.e06-08-0766 pmid: 17332503 |
[17] |
Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouvière C . N-Cadherin-Dependent cell-cell contact regulates Rho GTPases and β-Catenin localization in mouse C2C12 myoblasts. J Cell Biol, 2002,158(5):953-965.
doi: 10.1083/jcb.200202034 pmid: 12213839 |
[18] |
Schwander M, Leu M, Stumm M, Dorchies OM, Ruegg UT, Schittny J, Müller U . β1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell, 2003,4(5):673-685.
doi: 10.1016/s1534-5807(03)00118-7 pmid: 12737803 |
[19] |
Shao X, Davletov BA, Sutton RB, Südhof TC, Rizo J . Bipartite Ca 2+-binding motif in C2 domains of synaptotagmin and protein kinase C . Science, 1996,273(5272):248-251.
doi: 10.1126/science.273.5272.248 pmid: 8662510 |
[20] |
Sutton RB, Davletov BA, Berghuis AM, Südhof TC, Sprang SR . Structure of the first C2 domain of synaptotagmin I: a novel Ca 2+/phospholipid-binding fold . Cell, 1995,80(6):929-938.
doi: 10.1016/0092-8674(95)90296-1 pmid: 7697723 |
[21] |
Davis BD, Doherty KR, Delmonte AJ, Mcnally EM . Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J Biol Chem, 2002,277(25):22883-22888.
doi: 10.1074/jbc.M201858200 pmid: 11959863 |
[22] |
Doherty KR, Cave A, Davis DB, Delmonte AJ, Posey A, Earley JU, Hadhazy M , McNally EM. Normal myoblast fusion requires myoferlin. Development, 2005,132(24):5565-5575.
doi: 10.1242/dev.02155 pmid: 16280346 |
[23] |
Zhang W, Roy S . Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Dev Biol, 2017,423(1):24-33.
doi: 10.1016/j.ydbio.2017.01.019 pmid: 28161523 |
[24] |
Landemaine A, Rescan PY, Gabillard JC . Myomaker mediates fusion of fast myocytes in zebrafish embryos. Biochem Biophys Res Commun, 2014,451(4):480-484.
doi: 10.1016/j.bbrc.2014.07.093 pmid: 25078621 |
[25] |
Takei D, Nishi M, Fukada S, Doi M, Okamura H, Uezumi A, Zhang LD, Yoshida M, Miyazato M, Ichimura A, Takeshima H . Gm7325 is MyoD-dependently expressed in activated muscle satellite cells. Biomed Res, 2017, 38(3): 215-219.
doi: 10.2220/biomedres.38.215 pmid: 28637957 |
[26] |
He J, Wang F, Zhang P, Li WJ, Wang J, Li JL, Liu HG, Chen XP. MiR-491 inhibits skeletal muscle differentiation through targeting myomaker. Arch Biochem Biophys, 2017,625-626:30-38.
doi: 10.1016/j.abb.2017.05.020 pmid: 28579197 |
[27] |
Luo W, Li E, Nie QH, Zhang XQ . Myomaker, regulated by MYOD, MYOG and miR-140-3p, promotes chicken myoblast fusion. Int J Mol Sci, 2015,16(11):26186-26201.
doi: 10.3390/ijms161125946 pmid: 26540045 |
[28] |
Di GS, Connors S, Matsunami N, Cannavino J, Rose MF, Gilette NM, Artoni P, de Macena Sobreira NL, Chan WM, Webb BD, Robson CD, Cheng L, Van Ryzin C, Ramirez-Martinez A, Mohassel P, Leppert M, Scholand MB, Grunseich C, Ferreira CR, Hartman T, Hayes IM, Morgan T, Markie DM, Fagiolini M, Swift A, Chines PS, Speck-Martins CE, Collins FS, Jabs EW, Bönnemann CG, Olson EN, Carey JC, Robertson SP, Manoli I, Engle EC. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun, 2017,8:16077.
doi: 10.1038/ncomms16077 pmid: 28681861 |
[29] |
Parsons SA, Millay DP, Sargent MA, Naya FJ, Mcnally EM, Sweeney HL, Molkentin JD . Genetic disruption of calcineurin improves skeletal muscle pathology and cardiac disease in a mouse model of limb-girdle muscular dystrophy. J Biol Chem, 2007,282(13):10068-10078.
doi: 10.1074/jbc.M609368200 pmid: 17289669 |
[30] |
Gamage DG, Leikina E, Quinn ME, Ratinov A, Chernomordik LV, Millay DP . Insights into the localization and function of myomaker during myoblast fusion. J Biol Chem, 2017,292(42):17272-17289.
doi: 10.1074/jbc.M117.811372 pmid: 28860190 |
[31] |
Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M, Diao J, Kozlov MM, Chernomordik LV, Millay DP Myomaker and Myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev Cell, 2018, 46(6): 767-780.e7.
doi: 10.1016/j.devcel.2018.08.006 pmid: 30197239 |
[32] |
Shi J, Bi P, Pei JM, Li H, Grishin NV, Bassel-Duby R, Chen EH, Olson EN . Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proc Natl Acad Sci USA, 2017,114(45):11950-11955.
doi: 10.1073/pnas.1715229114 pmid: 29078404 |
[33] |
Krauss RS, Joseph GA, Goel AJ . Keep your friends close: cell-cell contact and skeletal myogenesis. Cold Spring Harb Perspect Biol, 2017,9(2):a029298.
doi: 10.1101/cshperspect.a029298 pmid: 28062562 |
[34] |
Srinivas BP, Woo J, Leong WY, Roy S . A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat Genet, 2007,39(6):781-786.
doi: 10.1038/ng2055 pmid: 17529975 |
[35] |
Powell GT, Wright GJ . Jamb and jamc are essential for vertebrate myocyte fusion. PLoS Biol, 2011,9(12):e1001216.
doi: 10.1371/journal.pbio.1001216 pmid: 22180726 |
[36] |
Hollnagel A, Grund C, Franke WW, Arnold HH . The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol, 2002,22(13):4760-4770.
doi: 10.1128/mcb.22.13.4760-4770.2002 pmid: 12052883 |
[37] |
Charlton CA, Mohler WA, Radice GL, Hynes RO, Blau HM . Fusion competence of myoblasts rendered genetically null for N-cadherin in culture. J Cell Biol, 1997,138(2):331-336.
doi: 10.1083/jcb.138.2.331 pmid: 9230075 |
[38] |
Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P . Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol, 2016,283:246-254.
doi: 10.1016/j.expneurol.2016.06.026 pmid: 27349407 |
[39] |
De Luna N, Gallardo E, Soriano M, Dominguez-Perles R, de la Torre C, Rojas-García R, García-Verdugo JM, Illa I. Absence of dysferlin alters myogenin expression and delays human muscle differentiation " in vitro". J Biol Chem, 2006,281(25):17092-17098.
doi: 10.1074/jbc.M601885200 pmid: 16608842 |
[40] |
Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA, Klibanov AL, Yan Z, Mandell JW, Ravichandran KS . Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature, 2013,497(7448):263-267.
doi: 10.1038/nature12135 pmid: 23615608 |
[41] |
Park SY, Yun Y, Lim JS, Kim MJ, Kim SY, Kim JE, Kim IS . Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun, 2016,7:10871.
doi: 10.1038/ncomms10871 pmid: 26972991 |
[42] |
Kim GW, Nam GH, Kim IS, Park SY . Xk-related protein 8 regulates myoblast differentiation and survival. Febs J, 2017,284(21):3575-3586.
doi: 10.1111/febs.14261 pmid: 28881496 |
[43] |
Jeong J, Conboy IM . Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem Biophys Res Commun, 2011,414(1):9-13.
doi: 10.1016/j.bbrc.2011.08.128 pmid: 21910971 |
[44] |
Williams AH, Liu N, van Rooij E, Olson EN . MicroRNA control of muscle development and disease. Curr Opin Cell Biol, 2009,21(3):461-469.
doi: 10.1016/j.ceb.2009.01.029 |
[45] |
Goljanek-Whysall K, Sweetman D, Münsterberg AE . MicroRNAs in skeletal muscle differentiation and disease. Clin Sci, 2012,123(11):611-625.
doi: 10.1042/CS20110634 pmid: 22888971 |
[46] |
Li XY, Fu LL, Cheng HJ, Zhao SH . Advances on microRNA in regulating mammalian skeletal muscle development. Hereditas(Beijing), 2017,39(11):1046-1053.
doi: 10.16288/j.yczz.17-112 pmid: 29254922 |
李新云, 付亮亮, 程会军, 赵书红 . MicroRNA调控哺乳动物骨骼肌发育. 遗传, 2017,39(11):1046-1053.
doi: 10.16288/j.yczz.17-112 pmid: 29254922 |
|
[47] |
Chen JF, Mandel EM, Thomson JM, Wu QL, Callis TE, Hammond SM, Conlon FL, Wang DZ . The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006,38(2):228-233.
doi: 10.1038/ng1725 pmid: 16380711 |
[48] |
van Rooij E, Sutherland LB, Qi XX, Richardson JA, Hill J, Olson EN . Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007,316(5824):575-579.
doi: 10.1126/science.1139089 pmid: 17379774 |
[49] |
Ke HE, Ren T, Zhu SH, Liang SR, Zhao AY . Transiently expressed pattern during myogenesis and candidate miRNAs of Tmem8C in goose. J Genet, 2017,96(1):39-46.
doi: 10.1007/s12041-016-0737-8 pmid: 28360388 |
[50] |
Gibson AJ, Karasinski J, Relvas J, Moss J, Sherratt TG, Strong PN, Watt DJ . Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle. J Cell Sci, 1995,108(1):207-214.
pmid: 7738097 |
[51] |
Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC . Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999,401(6751):390-394.
doi: 10.1038/43919 pmid: 10517639 |
[52] |
Mitani Y, Vagnozzi RJ, Millay DP . In vivo myomaker- mediated heterologous fusion and nuclear reprogramming. Faseb J, 2017,31(1):400-411.
doi: 10.1096/fj.201600945R pmid: 27825107 |
[53] |
Shen LY, Zhang SH, Wu ZH, Zheng MY, Li XW, Zhu L . The influence of satellite cells on meat quality and its differential regulation. Hereditas(Beijing), 2013,35(9):1081-1086.
doi: 10.3724/SP.J.1005.2013.01081 |
沈林園, 张顺华, 吴泽辉, 郑梦月, 李学伟, 朱砺 . 骨骼肌卫星细胞对肉品质的影响及其分化调控. 遗传, 2013,35(9):1081-1086.
doi: 10.3724/SP.J.1005.2013.01081 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: