遗传 ›› 2019, Vol. 41 ›› Issue (12): 1119-1128.doi: 10.16288/j.yczz.19-146
黄子莹1, 李龙1, 李倩倩1, 刘向东1,2, 李长春1,2()
收稿日期:
2019-05-21
修回日期:
2019-11-19
出版日期:
2019-12-20
发布日期:
2019-12-05
通讯作者:
李长春
E-mail:lichangchun@mail.hzau.edu.cn
作者简介:
黄子莹,在读硕士研究生,专业方向:动物遗传育种大数据分析。E-mail: 327620138@qq.com
基金资助:
Ziying Huang1, Long Li1, Qianqian Li1, Xiangdong Liu1,2, Changchun Li1,2()
Received:
2019-05-21
Revised:
2019-11-19
Online:
2019-12-20
Published:
2019-12-05
Contact:
Li Changchun
E-mail:lichangchun@mail.hzau.edu.cn
Supported by:
摘要:
猪骨骼肌发育是一个复杂的生物学过程,其中骨骼肌卫星细胞分化是影响骨骼肌发育的重要环节。近年来发现长链非编码RNA (long non-coding RNA, lncRNA)在骨骼肌卫星细胞分化中具有重要作用。为探究lncRNA TCONS_00815878对猪骨骼肌卫星细胞分化的影响,本研究利用qRT-PCR技术检测出生7 d内大白仔猪6种组织(心脏、脾脏、肺脏、肾脏、背肌和腿肌)及从胚胎期到出生后5个不同时间点(35 d、45 d、55 d胚胎及产后第7 d和第200 d后腿肌肉组织) TCONS_00815878的表达情况;利用反义核苷酸(antisense oligonucleotides, ASO)在猪骨骼肌卫星细胞中敲低TCONS_00815878,检验分化标记基因MyoD、MyoG和MyHC表达情况;通过生物信息学分析预测TCONS_00815878靶基因,并利用DAVID软件在线预测其靶基因的功能与通路。结果表明:TCONS_00815878在猪心肌和腿肌中高表达;仔猪出生后7 d内,TCONS_00815878在猪肌肉组织中表达量不断升高,第7 d达到高峰;在猪骨骼肌卫星细胞增殖和分化过程中,TCONS_00815878在分化期表达量不断上升,且在分化30 h表达量达到峰值;敲低TCONS_00815878后,MyoD、MyoG和MyHC基因表达量降低,其中MyoD表达量显著下降(P<0.05)。此外,功能预测结果发现,其靶基因富集到糖酵解和丙酮酸代谢等与骨骼肌卫星细胞分化相关的多个生物学过程。本研究推测,lncRNA TCONS_00815878可能对猪骨骼肌卫星细胞的分化起促进作用。
黄子莹, 李龙, 李倩倩, 刘向东, 李长春. lncRNA TCONS_00815878对猪骨骼肌卫星细胞分化的影响[J]. 遗传, 2019, 41(12): 1119-1128.
Ziying Huang, Long Li, Qianqian Li, Xiangdong Liu, Changchun Li. The effect of lncRNA TCONS_00815878 on differentiation of porcine skeletal muscle satellite cells[J]. Hereditas(Beijing), 2019, 41(12): 1119-1128.
表1
本文所用引物信息"
目的基因 | 引物序列( 5′→3′) | 复性温度(℃) | 产物大小(bp) |
---|---|---|---|
TCONS_00815878 | F: ACACCCTTTCCCAAAATCAA | 56 | 93 |
R: GCAGACTGTCCAAATCTACCCT | |||
PFKM | F: GAGAGCGTTTCCATGATGCTTC | 60 | 221 |
R: AATCAAAGAGGGTGCCATCCAT | |||
ELOVL5 | F: ATATGAAGATCATCCGCGTGCT | 60 | 59 |
R: GTGATCTGGTGGTTGTTCTTGC | |||
MBTPS1 | F: CCTCAACAGTGGTGGAATACGA | 60 | 179 |
R: TTGGGATGATCTTCAAGCGTCA | |||
MyoD | F: GGCTGCCCAAGGTGGAAATC | 60 | 170 |
R: TGCGTCTGAGTCACCGCTGTAG | |||
MyoG | F: ATGAGACATCCCCCTACTTCTACCA | 60 | 160 |
R: GTCCCCAGCCCCTTATCTTCC | |||
Pax7 | F: GGAGTACAAGAGGGAGAACCC | 60 | 122 |
R: TTCTGAGCACGCGGCTAATC | |||
Myf5 | F: GAATGCCATCCGCTACAT | 60 | 125 |
R: AACTGCTGCTCTTTCTGG | |||
MyHC | F: GTTCAGAGAAAGGCATCCCAAA | 60 | 135 |
R: GAGAGTGACCGACACCACAAGTG | |||
FKBP10 | F: ATGTGTCCTGGAGAGAGAAGGA | 60 | 209 |
R: AATCAAAGAGGGTGCCATCCAT | |||
18S rRNA | F: TCCCGACGTGACTGCTC | 60 | 133 |
R: GGTGACAGCGGGGTGG |
附表1
靶基因列表"
基因名称 | 基因名称 | 基因名称 | 基因名称 | 基因名称 | 基因名称 |
---|---|---|---|---|---|
ARFGAP3 | ADGRL4 | POLR3K | SLC25A26 | LAMC2 | ARHGEF10 |
IFT27 | PGM1 | KCTD5 | MITF | INTS7 | PLXNA3 |
PRPF40B | KIF2C | ADRA2B | GXYLT2 | LPGAT1 | REEP1 |
IGFBP6 | SMOC2 | MAP4K4 | PPARG | HHAT | TECTA |
NCKAP1L | CNKSR3 | TBC1D8 | GK5 | MGAT5 | SLC16A3 |
STAT2 | NT5DC1 | CHST10 | P2RY14 | ADGRA2 | ADAMTS2 |
BAZ2A | SNAP91 | ANKRD23 | SENP5 | HERC2 | ELOVL5 |
RASSF8 | PSTPIP2 | SMYD1 | PARP14 | SCN3A | CES3 |
KCNJ8 | CTIF | TMSB10 | CD47 | CALCRL | KDM4B |
P3H3 | ZNF106 | DOK1 | OTC | TFPI | BBS9 |
GAPDH | TYRO3 | DGUOK | ATP6AP2 | TMEFF2 | MPI |
TNFRSF1A | RPAP1 | PREB | SLC9A7 | PLCL1 | PPIP5K2 |
CRACR2A | ATP10A | NBAS | WDR45 | CARF | GREB1 |
ITFG2 | ZNF516 | CD38 | SYNJ2 | PARD3B | PTPN6 |
BID | SERPINB2 | KLHL2 | PGK1 | BARD1 | PXDC1 |
SLC22A23 | DPP8 | GUCY1B1 | ZMAT1 | CYP27A1 | KDSR |
SERPINB1 | ARF6 | SLC4A4 | ELF4 | PRKAG3 | ST6GAL1 |
JARID2 | KANK1 | ARHGAP10 | ENOX2 | GPC1 | NOA1 |
PHF1 | NPR2 | ANXA5 | FMR1 | HDLBP | IGFBP5 |
VEGFA | TMEM8B | STPG2 | TMEM185A | SNED1 | SRPK2 |
ZXDC | ZCCHC7 | MAPK10 | RENBP | NEB | SLC25A40 |
TMEM266 | FKTN | PAQR3 | NADSYN1 | CAV2 | SCAP |
LINGO1 | OLFML2A | FGF9 | BRMS1 | DBNL | ACSM5 |
EDC3 | DNM1 | EBPL | EHBP1L1 | ZNF282 | PADI2 |
AKAP5 | EXD3 | PHF11 | MAP4K2 | CDK3 | DCUN1D2 |
GALNT16 | FBXL6 | MPHOSPH8 | MARK2 | GALK1 | CARHSP1 |
IFT43 | MYC | DNAH10 | DTX4 | TANC2 | B4GALT2 |
VASH1 | NCOA2 | TMEM120B | KBTBD4 | FKBP10 | CTC1 |
IRF2BPL | SCYL3 | PPTC7 | ABTB2 | TBKBP1 | LMAN2L |
SETD3 | F5 | ACAD10 | LMO2 | TSPOAP1 | CASP10 |
WDR20 | PBX1 | HSPB8 | MPPED2 | ABR | STK36 |
MBTPS1 | CD84 | NOS1 | TEAD1 | ANKFY1 | BDKRB2 |
THAP11 | SLAMF8 | MIF | SCAMP4 | SMTNL2 | MED31 |
SLC9A5 | SYT11 | LZTR1 | ANKRD24 | ENO3 | CENPH |
YIF1B | CERS2 | DGCR2 | CHAF1A | BCL6B | PANK4 |
ARHGEF1 | FMO5 | SIPA1L2 | PNPLA6 | MYH8 | ESYT3 |
IRF2BP1 | ZNF697 | ARID5B | ZNF608 | SLC5A10 | OBSL1 |
PLEKHA4 | TTF2 | SPOCK2 | PDLIM4 | ARHGAP23 | CASP8 |
BCAT2 | CTTNBP2NL | CEP55 | IL5 | PFKM | FLYWCH1 |
BAX | ARHGAP29 | TBC1D12 | TRPC7 | OXTR | VPS37C |
CACNG6 | GLMN | SORBS1 | FZD4 | KCNA5 | PARVA |
PUSL1 | TGFBR3 | ZDHHC6 | ARHGAP42 | CEP19 | PHACTR4 |
MMEL1 | GBP2 | EIF3A | HINFP | DUS2 | RASIP1 |
CLCN6 | HSPA12B | PPP1R12B | SORL1 | DIS3L2 | OLFM1 |
NPPA | TTI1 | RPP25L | NTM | HS6ST1 | CCDC112 |
VPS13D | KCNB1 | CACNB2 | PRELP | STK38L | HS1BP3 |
DHRS3 | GUSB | CREM | SRI | WDR73 | AHR |
FHAD1 | CTF1 | TRAK1 | CALCR | IL20RB | TBC1D23 |
HMGN2 | SETD1A | PTH1R | CROT | CALM3 | LYSMD4 |
EPB41 | REXO5 | TEX264 | PHTF2 | WDR4 | PDIK1L |
CLSPN | ZNF174 | NISCH | LAMB1 | NFIA | |
MOCOS | RHBDF1 | GLT8D1 | KIAA1614 | TIA1 |
[1] |
Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li ST, Larkin DM, Kim H, Frantz LAF, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Silva DC, Chardon P, Chen C, Cheng R, Choi SH, Chow W, Clark RC, Clee C, Crooijmans RPMA, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du ZQ, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JGR, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu ZL, Humphray SJ, Hunt T, Hornshøj H, Jeon JT, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim JH, Kim KW, Kim TK, Larson G, Lee K, Lee KT, Leggett R, Lewin HA, Li YR, Liu WS, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Nguyen DT, Ni PX, Oh SJ, Onteru S, Panitz F, Park EW, Park HS, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Zas SR, Rohrer GA, Rund L, Sang YM, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang GJ, Zhang JG, Zhang J, Zhao SH, Rogers J, Churcher C, Schook LB . Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012,491(7424):393-398.
doi: 10.1038/nature11622 |
[2] |
Almada AE, Wagers AJ . Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol, 2016,17(5):267-279.
doi: 10.1038/nrm.2016.7 pmid: 26956195 |
[3] |
Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM . Self-renewal and expansion of single transplanted muscle stem cells. Nature, 2008,456(7221):502-506.
doi: 10.1038/nature07384 pmid: 18806774 |
[4] |
Allen RE, Merkel RA, Young RB . Cellular aspects of muscle growth: myogenic cell proliferation. J Anim Sci, 1979,49(1):115-127.
doi: 10.2527/jas1979.491115x pmid: 500507 |
[5] |
Buckingham M . Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev, 2006,16(5):525-532.
doi: 10.1016/j.gde.2006.08.008 |
[6] |
Jathar S, Kumar V, Srivastava J, Tripathi V . Technological developments in lncRNA biology. Adv Exp Med Biol, 2017,1008:283-323.
doi: 10.1007/978-981-10-5203-3_10 pmid: 28815544 |
[7] |
Yang F, Yi F, Cao HQ, Liang ZC, Du Q . The emerging landscape of long non-coding RNAs. Hereditas(Beijing), 2014,36(5):456-468.
doi: 10.3724/SP.J.1005.2014.0456 |
杨峰, 易凡, 曹慧青, 梁子才, 杜权 . 长链非编码RNA研究进展. 遗传, 2014,36(5):456-468.
doi: 10.3724/SP.J.1005.2014.0456 |
|
[8] |
Lu C, Huang YH . Progress in long non-coding RNAs in animals. Hereditas(Beijing), 2017,39(11):1054-1065.
doi: 10.16288/j.yczz.17-120 pmid: 29254923 |
路畅, 黄银花 . 动物长链非编码RNA研究进展. 遗传, 2017,39(11):1054-1065.
doi: 10.16288/j.yczz.17-120 pmid: 29254923 |
|
[9] |
Weikard R, Demasius W, Kuehn C . Mining long noncoding RNA in livestock. Anim Genet, 2017,48(1):3-18.
doi: 10.1111/age.12493 pmid: 27615279 |
[10] |
Li H, Feng JC, Li GL, Wang X, Li MZ, Liu HF . The effect of lnc-RAP3 on 3T3-L1 preadipocyte differentiation in mouse. Hereditas(Beijing), 2018,40(9):758-766.
doi: 10.16288/j.yczz.18-053 pmid: 30369479 |
李欢, 冯晋川, 李贵林, 王讯, 李明洲, 刘海峰 . Lnc- RAP3对小鼠3T3-L1前脂肪细胞分化的影响. 遗传, 2018,40(9):758-766.
doi: 10.16288/j.yczz.18-053 pmid: 30369479 |
|
[11] | Xie SH . Integrated analysis of miRNA and mRNA expression profiles of muscle development in Changbai and Lantang pigs[Dissertation]. Sun Yat-Sen University, 2017. |
谢水华 . 长白猪和蓝塘猪肌肉发育差异miRNA和mRNA表达谱的整合分析[学位论文]. 中山大学, 2017. | |
[12] |
Tang ZL, Wu Y, Yang YL, Yang YCT, Wang ZS, Yuan JP, Yang Y, Hua CJ, Fan XH, Niu GL, Zhang YB, Lu ZJ, Li K . Comprehensive analysis of long non-coding RNAs highlights their spatio-temporal expression patterns and evolutional conservation in Sus scrofa. Sci Rep, 2017,7:43166.
doi: 10.1038/srep43166 pmid: 28233874 |
[13] |
Zhou ZY, Li AM, Adeola AC, Liu YH, Irwin DM, Xie HB, Zhang YP . Genome-Wide identification of long intergenic noncoding RNA genes and their potential association with domestication in pigs. Genome Biol Evol, 2014,6(6):1387-1392.
doi: 10.1093/gbe/evu113 pmid: 24891613 |
[14] | Yun L, Liu JP, Zhuang ZX, Yang LQ, Zhang RL, Ye XM, Cheng JQ . Real-time RT-PCR gene expression relative quantification REST © software analysis compared with 2 (-ΔΔCT)method . J Trop Med, 2007,7(10):956-958. |
庾蕾, 刘建平, 庄志雄, 杨淋清, 张仁利, 叶小明, 程锦泉 . 实时RT-PCR基因表达相对定量REST ©软件分析与2 (-ΔΔCT)法比较 . 热带医学杂志, 2007,7(10):956-958. | |
[15] |
Chen G, Shi TL, Shi LM . Characterizing and annotating the genome using RNA-seq data. Sci China Life Sci, 2017,60(2):116-125.
doi: 10.1007/s11427-015-0349-4 pmid: 27294835 |
[16] |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR . Landscape of transcription in human cells. Nature, 2012,489(7414):101-108.
doi: 10.1038/nature11233 |
[17] |
Deniz E, Erman B . Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics, 2017,17(2-3):135-143.
doi: 10.1007/s10142-016-0524-x pmid: 27681237 |
[18] |
Jandura A, Krause HM . The new RNA world: growing evidence for long noncoding RNA functionality. Trends Genet, 2017,33(10):665-676.
doi: 10.1016/j.tig.2017.08.002 pmid: 28870653 |
[19] |
Li YY, Chen XN, Sun H, Wang HT . Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases. Cancer Lett, 2018,417:58-64.
doi: 10.1016/j.canlet.2017.12.015 pmid: 29253523 |
[20] |
Flynn RA, Chang HY . Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell, 2014,14(6):752-761.
doi: 10.1016/j.stem.2014.05.014 |
[21] |
Qin CY, Cai H, Qing HR, Li L, Zhang HP . Recent advances on the role of long non-coding RNA H19 in regulating mammalian muscle growth and development. Hereditas(Beijing), 2017,39(12):1150-1157.
doi: 10.16288/j.yczz.17-193 pmid: 29258985 |
秦辰雨, 蔡禾, 卿涵睿, 李利, 张红平 . 长链非编码RNA H19对哺乳动物肌肉生长发育的调控. 遗传, 2017,39(12):1150-1157.
doi: 10.16288/j.yczz.17-193 pmid: 29258985 |
|
[22] | Zhou R, Wang YX, Long KR, Jiang AA, Jin L . Regulatory mechanism for lncRNAs in skeletal muscle development and progress on its research in domestic animals. Hereditas(Beijing), 2018,40(4):292-304. |
周瑞, 王以鑫, 龙科任, 蒋岸岸, 金龙 . LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展. 遗传, 2018,40(4):292-304. | |
[23] | Li MX, Huang T, Ma LP, Liu Y, Li T, Gong HB, Qiu MY, Xie S, Sun XM . Cloning of porcine lncRNA-ENSSSCT00000018610 and its expression pattern in porcine ovarian follicles. Acta Vet Et Zootech Sin, 2018,49(9):1830-1839. |
李梦寻, 黄涛, 马力鹏, 刘乙, 李涛, 公红斌, 邱梅玉, 谢苏, 孙晓梅 . 猪lncRNA-ENSSSCT00000018610的克隆及其在猪卵泡中的表达. 畜牧兽医学报, 2018,49(9):1830-1839. | |
[24] |
Picard B, Lefaucheur L, Berri C, Duclos MJ . Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev, 2002,42(5):415-431.
doi: 10.1051/rnd:2002035 pmid: 12537254 |
[25] |
Lefaucheur L, Vigneron P . Post-natal changes in some histochemical and enzymatic characteristics of three pig muscles. Meat Sci, 1986,16(3):199-216.
doi: 10.1016/0309-1740(86)90026-4 pmid: 22054929 |
[26] |
Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA . Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res, 2002,281(1):39-49.
doi: 10.1006/excr.2002.5653 pmid: 12441128 |
[27] |
Liao Q, Liu CN, Yuan XY, Kang SL, Miao RY, Xiao H, Zhao GG, Luo HT, Bu DC, Zhao HT, Skogerbø G, Wu ZD, Zhao Y . Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res, 2011,39(9):3864-3878.
doi: 10.1093/nar/gkq1348 pmid: 21247874 |
[28] |
Sanoudou D, Haslett JN, Kho AT, Guo SQ, Gazda HT, Greenberg SA, Lidov HGW, Kohane IS, Kunkel LM, Beggs AH . Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle. Proc Natl Acad Sci USA, 2003,100(8):4666-4671.
doi: 10.1073/pnas.0330960100 pmid: 12677001 |
[29] |
Mangano KM, Sahni S, Kerstetter JE, Kenny AM, Hannan MT . Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporos Rep, 2013,11(3):203-212.
doi: 10.1007/s11914-013-0149-0 pmid: 23857286 |
[30] |
Lambadiari V, Triantafyllou K, Dimitriadis GD . Insulin action in muscle and adipose tissue in type 2 diabetes: The significance of blood flow. World J Diabetes, 2015,6(4):626-633.
doi: 10.4239/wjd.v6.i4.626 pmid: 25987960 |
[1] | 吴玲玲, 张小玉, 李晓, 靳建军, 杨公社, 史新娥. miR-196b-5p促进成肌细胞增殖分化[J]. 遗传, 2023, 45(5): 435-446. |
[2] | 赵欢, 周斌. 胰岛beta细胞再生研究进展[J]. 遗传, 2022, 44(5): 370-382. |
[3] | 余志鑫, 李鹏宇, 李凯, 缪时英, 王琳芳, 宋伟. 精原干细胞微环境研究进展[J]. 遗传, 2022, 44(12): 1103-1116. |
[4] | 邹礼平, 潘铖, 王梦馨, 崔林, 韩宝瑜. 激素调控植物成花机理研究进展[J]. 遗传, 2020, 42(8): 739-751. |
[5] | 杜坤, 毛初阳, 任安勇, 吴雪梅, 李庆玲, 陈婷婷, 陈仕毅, 赖松家. 家兔前体脂肪细胞分化不同时期基因表达谱分析[J]. 遗传, 2020, 42(3): 309-320. |
[6] | 陈万银, 颜一丹, 栾晓瑾, 王敏, 方杰. CG8005基因在果蝇睾丸生殖细胞中的功能分析[J]. 遗传, 2020, 42(11): 1122-1132. |
[7] | 杨科, 薛征, 吕湘. 细胞终末分化过程中三维基因组结构与功能调控的分子机制[J]. 遗传, 2020, 42(1): 32-44. |
[8] | 李欢, 冯晋川, 李贵林, 王讯, 李明洲, 刘海峰. Lnc-RAP3对小鼠3T3-L1前脂肪细胞分化的影响[J]. 遗传, 2018, 40(9): 758-766. |
[9] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[10] | 杨熳,卢冰婕,段媛媛,陈晓峰,马建岗,郭燕. 骨质疏松症易感基因BDNF的遗传学关联分析及功能研究[J]. 遗传, 2017, 39(8): 726-736. |
[11] | 亢逸,关桂君,洪云汉. 用模式生物青鳉概观硬骨鱼性别决定及性分化研究进展[J]. 遗传, 2017, 39(6): 441-454. |
[12] | 徐妙云, 朱佳旭, 张敏, 王磊. 植物miR169/NF-YA调控模块研究进展[J]. 遗传, 2016, 38(8): 700-706. |
[13] | 贾振伟. 线粒体与多潜能干细胞功能[J]. 遗传, 2016, 38(7): 603-611. |
[14] | 吴骏,张俊红,黄蒙慧,朱敏慧,童再康. 光皮桦miR164及其靶基因NAC1在低氮胁迫中的表达分析[J]. 遗传, 2016, 38(2): 155-162. |
[15] | 周学, 杜宜兰, 金萍, 马飞. 癌症相关microRNA与靶基因的生物信息学分析[J]. 遗传, 2015, 37(9): 855-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: