遗传 ›› 2020, Vol. 42 ›› Issue (1): 73-86.doi: 10.16288/j.yczz.19-326
收稿日期:
2019-10-29
修回日期:
2019-12-19
出版日期:
2020-01-20
发布日期:
2019-12-27
通讯作者:
宫磊
E-mail:gongl100@nenu.edu.cn
作者简介:
董芊里,博士研究生,专业方向:遗传学。E-mail: dongql043@nenu.edu.cn|王金宾,博士研究生,专业方向:遗传学。E-mail: wangjb702@nenu.edu.cn|李晓宠,博士研究生,专业方向:遗传学。E-mail:lixc800@nenu.edu.cn; 董芊里、王金宾和李晓宠并列第一作者
基金资助:
Qianli Dong, Jinbin Wang, Xiaochong Li, Lei Gong()
Received:
2019-10-29
Revised:
2019-12-19
Online:
2020-01-20
Published:
2019-12-27
Contact:
Gong Lei
E-mail:gongl100@nenu.edu.cn
Supported by:
摘要:
染色质在细胞核内的缠绕、折叠及其在细胞核内的空间排布是真核生物染色质构型的主要特征。在经典DNA探针荧光原位杂交显微观察的基础上,基于新一代测序技术的Hi-C及ChIA-PET染色质构型捕获技术已经被广泛应用于动物及植物细胞核染色质构型的研究中,并以新的角度定义了包括:染色体(质)域(chromosome territory)、A/B染色质区室(compartment A/B)、拓扑偶联结构域(topological associated domains, TADs)、染色质环(chromatin loops)等在内的多个更为精细的染色质构型。利用以上两种主流技术,越来越多的植物物种染色质构型特征被鉴定、分析和比较。本文系统分析和总结了近年来以植物细胞为模型的细胞核染色构型领域取得的重要成果,包括各级染色质构型特征的组成、建立机制和主要影响因素等。在此基础上,分析了目前研究植物染色质构型技术的瓶颈和突破性的技术进展,并对后续研究主要关注的问题和研究内容进行了展望,以期为相关领域的研究提供更多的理论参考和依据。
董芊里, 王金宾, 李晓宠, 宫磊. 植物三维染色质构型研究进展[J]. 遗传, 2020, 42(1): 73-86.
Qianli Dong, Jinbin Wang, Xiaochong Li, Lei Gong. Progresses in the plant 3D chromatin architecture[J]. Hereditas(Beijing), 2020, 42(1): 73-86.
表1
Hi-C与ChIA-PET技术的特征和应用范围的比较"
技术 | 互作方式 | 覆盖范围 | 检测方法 | 技术优势 | 技术局限 | 研究应用 |
---|---|---|---|---|---|---|
Hi-C | 全部互作 (all vs. all) | 全基因 组范围 | 新一代 测序技术 | 可以获得较高分辨率的互作矩阵 | 需大量细胞进行建库,以产出较高分辨率Hi-C矩阵。基于由此得到的高分辨率Hi-C矩阵,所反映的染色体(质)特征为大量组织样本中大量细胞的平均值;使用限制性内切酶对染色体进行剪切时,可能会由于酶的剪切偏好性,对互作结果产生一定程度的影响 | 可产出较高分辨率互作矩阵,用以分析目前已知的各级染色体(质)构型(compartment、TAD、chromatin loop等);Hi-C技术亦可用于辅助基因组拼接 |
scHi-C | 可以获得单个细胞的互作热图,观察单个细胞内的染色体(质)特征 | 单个细胞中DNA含量较少,无法绘制较高分辨率的Hi-C热图,所以无法分析需要较高分辨率下可以分析的TAD结构或chromatin loop结构;使用限制性内切酶对染色体进行剪切时,可能会由于酶的剪切偏好性,对互作结果产生一定程度的影响。 | 可研究单个细胞内的染色体(质)构型,可以更精准的阐述染色体(质)构型特征 | |||
ChIA-PET | 特定蛋白介导的全部互作(many vs. all) | 可以构建已知转录因子介导的染色体(质)互作网络;由于使用超声的方法进行机械破碎,不会由于限制性内切酶的剪切偏好性对互作结果产生影响;具有更高的分辨率(100 bp水平)[ | 由于ChIA-PET实验优先使用特异性的蛋白抗体,其选择性捕获与目标蛋白交联在一起的DNA片段,可能会忽略其他的互作 | 主要包含靶蛋白结合位点和由靶蛋白介导的结合位点之间的染色质相互作用信息 |
表2
植物不同等级的染色质构型特征汇总"
物种 | 技术 | 染色体 (质)域 | A/B染色质 区室 | 拓扑偶联 结构域 | 染色质环 | IHIs/KEEs | 参考文献 |
---|---|---|---|---|---|---|---|
深山南芥 (Arabidopsis lyrata) | Hi-C | √ | [17] | ||||
拟南芥 (Arabidopsis thaliana) | Hi-C | √ | √ | √ | [18] | ||
Hi-C | √ | √ | √ | [19] | |||
Hi-C | √ | √ | √ | √ | [20] | ||
四倍体拟南芥 (Arabidopsis thaliana (4×Columbia)) | Hi-C | √ | √ | √ | [21] | ||
甘蓝 (Brassica oleracea) | Hi-C | √ | √ | √ | √ | [22] | |
芜菁 (Brassica rapa) | Hi-C | √ | √ | √ | √ | [22] | |
树棉 (Gossypium arboreum) | Hi-C | √ | √ | √ | [23] | ||
海岛棉 (Gossypium barbadense) | Hi-C | √ | √ | √ | [23] | ||
陆地棉 (Gossypium hirsutum) | Hi-C | √ | [24] | ||||
雷蒙德氏棉 (Gossypium raimondii) | Hi-C | √ | √ | √ | [23] | ||
大麦 (Hordeum vulgare) | Hi-C | √ | [25] | ||||
水稻 明恢63 (Oryza Sativa L. spp. indica (Minghui63)) | Hi-C | √ | √ | √ | [26] | ||
水稻 日本晴 (Oryza sativa L. spp. Japonica) | Hi-C | √ | √ | √ | √ | √ | [27] |
Hi-C | √ | √ | √ | √ | [28] | ||
scHi-C | √ | √ | [29] | ||||
ChIA-PET | √ | √ | √ | [15] | |||
粟 (Setaria italic) | Hi-C | √ | √ | √ | √ | [28] | |
番茄 (Solanum lycopersicum) | Hi-C | √ | √ | √ | √ | [28] | |
高粱 (Sorghum bicolor) | Hi-C | √ | √ | √ | √ | [28] | |
玉米 (Zea mays) | Hi-C | √ | √ | √ | √ | [28] | |
ChIA-PET | √ | [30] |
[1] |
Tiang CL, He Y, Pawlowski WP . Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol, 2012,158(1):26-34.
doi: 10.1104/pp.111.187161 pmid: 22095045 |
[2] |
Lysak MA, Fransz PF, Ali HBM, Schubert I . Chromosome painting in Arabidopsis thaliana. Plant J, 2001,28(6):689-697.
doi: 10.1046/j.1365-313x.2001.01194.x pmid: 11851915 |
[3] |
Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T . Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol, 2005,3(5):e157.
doi: 10.1371/journal.pbio.0030157 pmid: 15839726 |
[4] |
Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O’Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S,. The 4D nucleome project. Nature, 2017,549(7671):219-226.
doi: 10.1038/nature23884 pmid: 28905911 |
[5] |
Doğan ES, Liu C . Three-dimensional chromatin packing and positioning of plant genomes. Nat Plants, 2018,4(8):521.
doi: 10.1038/s41477-018-0199-5 pmid: 30061747 |
[6] |
Bonev B, Cavalli G . Organization and function of the 3D genome. Nat Rev Genet, 2016,17(11):661-678.
doi: 10.1038/nrg.2016.112 pmid: 27739532 |
[7] | Lü HQ, Hao LL, Liu Y, Wu ZF, Han JQ . Current status and future perspectives in bioinformatical analysis of Hi-C data. Hereditas(Beijing), 2020,42(1):87-99. |
吕红强, 郝乐乐, 刘源, 吴志芳, 韩九强 . 基于生物信息学的Hi-C研究现状与发展趋势. 遗传, 2020,42(1):87-99. | |
[8] | Ning CY, He MN, Tang QZ, Zhu Q, Li MZ, Li DY . Advances in mammalian three-dimensional genome by using Hi-C technology approach. Hereditas(Beijing), 2019,41(3):215-233. |
宁椿游, 何梦楠, 唐茜子, 朱庆, 李明洲, 李地艳 . 基于Hi-C技术哺乳动物三维基因组研究进展. 遗传, 2019,41(3):215-233. | |
[9] |
Sotelo-Silveira M, Montes RAC, Sotelo-Silveira JR , Marsch-Martínez N, de Folter S. Entering the next dimension: plant genomes in 3D. Trends Plant Sci, 2018,23(7):598-612.
doi: 10.1016/j.tplants.2018.03.014 pmid: 29703667 |
[10] |
Liu C, Weigel D . Chromatin in 3D: progress and prospects for plants. Genome Biol, 2015,16(1):170.
doi: 10.1186/s13059-015-0738-6 pmid: 26294115 |
[11] |
Lieberman-Aiden E, Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J . Comprehensive mapping of Long- Range interactions reveals folding principles of the human genome. Science, 2009,326(5950):289-293.
doi: 10.1126/science.1181369 pmid: 19815776 |
[12] |
Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EGY, Huang PYH, Welboren WJ, Han YY, Ooi HS, Ariyaratne PN, Vega VB, Luo YQ, Tan PY, Choy PY, Wansa KDSA, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li HX, Desai KV, Thomsen JS, Lee YK, Karuturi RKM, Herve T, Bourque G, Stunnenberg HG, Ruan XA, Cacheux- Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan YJ . An oestrogen-receptor-α-bound human chromatin interactome. Nature, 2009,462(7269):58-64.
doi: 10.1038/nature08497 pmid: 19890323 |
[13] |
Dekker J, Rippe K, Dekker M, Kleckner N . Capturing chromosome conformation. Science, 2002,295(5558):1306-1311.
doi: 10.1126/science.1067799 pmid: 11847345 |
[14] |
Zhang XY, He C, Ye BY, Xie DJ, Shi ML, Zhang Y, Shen WL, Li P, Zhao ZH . Optimization and quality control of genome-wide Hi-C library preparation. Hereditas(Beijing), 2017,39(9):847-855.
doi: 10.16288/j.yczz.17-152 pmid: 28936982 |
张香媛, 何超, 叶丙雨, 谢德健, 师明磊, 张彦, 沈文龙, 李平, 赵志虎 . 全基因组染色质相互作用Hi-C文库制备的优化及其质量控制. 遗传, 2017,39(9):847-855.
doi: 10.16288/j.yczz.17-152 pmid: 28936982 |
|
[15] |
Zhao L, Wang SQ, Cao ZL, Ouyang WZ, Zhang Q, Xie L, Zheng RQ, Guo MR, Ma M, Hu Z, Sung WK, Zhang QF, Li GL . Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation. Nat Commun, 2019,10(1):1-13.
doi: 10.1038/s41467-018-07882-8 pmid: 30602773 |
[16] |
Fraser J, Williamson I, Bickmore WA, Dostie J . An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol Mol Biol Rev, 2015,79(3):347-372.
doi: 10.1128/MMBR.00006-15 pmid: 26223848 |
[17] |
Zhu WS, Hu B, Becker C, Doğan ES, Berendzen KW, Weigel D, Liu C . Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol, 2017,18(1):157.
doi: 10.1186/s13059-017-1281-4 pmid: 28830561 |
[18] |
Grob S, Schmid MW, Grossniklaus U . Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of drosophila. Mol Cell, 2014,55(5):678-693.
doi: 10.1016/j.molcel.2014.07.009 pmid: 25132176 |
[19] |
Feng SH, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE . Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell, 2014,55(5):694-707.
doi: 10.1016/j.molcel.2014.07.008 pmid: 25132175 |
[20] |
Wang CM, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D . Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res, 2015,25(2):246-256.
doi: 10.1101/gr.170332.113 pmid: 25367294 |
[21] |
Zhang H, Zheng RQ, Wang YL, Zhang Y, Hong P, Fang YP, Li GL, Fang YD . The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res, 2019,47(15):7857-7869.
doi: 10.1093/nar/gkz511 pmid: 31184697 |
[22] |
Xie T, Zhang FF, Zhang HY, Wang XT, Hu JH, Wu XM . Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nat Plants, 2019,5(8):822-832.
doi: 10.1038/s41477-019-0479-8 pmid: 31383969 |
[23] |
Wang MJ, Wang PC, Lin M, Ye ZX, Li GL, Tu LL, Shen C, Li JY, Yang QY, Zhang XL . Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat Plants, 2018,4(2):90-97.
doi: 10.1038/s41477-017-0096-3 pmid: 29379149 |
[24] |
Wang MJ, Tu LL, Lin M, Lin ZX, Wang PC, Yang QY, Ye ZX, Shen C, Li JY, Zhang L, Zhou XL, Nie XH, Li ZH, Guo K, Ma YZ, Huang C, Jin SX, Zhu LF, Yang XY, Min L, Yuan DJ, Zhang QH, Lindsey K, Zhang XL . Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet, 2017,49(4):579-587.
doi: 10.1038/ng.3807 pmid: 28263319 |
[25] |
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, María MA, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Lala AS, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017,544(7651):427-433.
doi: 10.1038/nature22043 pmid: 28447635 |
[26] |
Dong PF, Tu XY, Li HX, Zhang JH, Grierson D, Li PH, Zhong SL. Tissue‐specific Hi‐C analyses of rice, foxtail millet and maize suggest non‐canonical function of plant chromatin domains. J Integr Plant Biol, 2019. https://doi.org/10.1111/jipb.12809
doi: 10.1111/jipb.12907 pmid: 31944575 |
[27] |
Dong QL, Li N, Li XC, Yuan Z, Xie DJ, Wang XF, Li JN, Yu YN, Wang JB, Ding BX, Zhang ZB, Li CP, Bian Y, Zhang A, Wu Y, Liu B, Gong L . Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J, 2018,94(6):1141-1156.
doi: 10.1111/tpj.13925 pmid: 29660196 |
[28] |
Dong PF, Tu XY, Chu PY, Lü PT, Zhu N, Grierson D, Du BJ, Li PH, Zhong SL . 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol Plant, 2017,10(12):1497-1509.
doi: 10.1016/j.molp.2017.11.005 pmid: 29175436 |
[29] |
Zhou SL, Jiang W, Zhao Y, Zhou DX . Single-cell three- dimensional genome structures of rice gametes and unicellular zygotes. Nat Plants, 2019,5(8):795-800.
doi: 10.1038/s41477-019-0471-3 pmid: 31332313 |
[30] |
Peng Y, Xiong D, Zhao L, Ouyang WZ, Wang SQ, Sun J, Zhang Q, Guan PP, Xie L, Li WQ, Li GL, Yan JB, Li XW . Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat Commun, 2019,10(1):2632.
doi: 10.1038/s41467-019-10602-5 pmid: 31201335 |
[31] | Boveri T . Die blastomerenkerne von ascaris megalocephala und die theorie der chromosomenindividualität. Archiv Fur Zellforschung, 1909,3:181-268. |
[32] |
Manuelidis L, Borden J . Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma, 1988,96(6):397-410.
doi: 10.1007/bf00303033 pmid: 3219911 |
[33] |
Armstrong SJ, Franklin FCH, Jones GH . Nucleolus- associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci, 2001,114(23):4207-4217.
pmid: 11739653 |
[34] |
Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I . Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA, 2002,99(22):14584-14589.
doi: 10.1073/pnas.212325299 pmid: 12384572 |
[35] |
Liu C, Wang C, Wang GM, Becker C, Zaidem M, Weigel D . Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res, 2016,26(8):1057-1068.
doi: 10.1101/gr.204032.116 pmid: 27225844 |
[36] |
Liu C, Cheng YJ, Wang JW, Weigel D . Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants, 2017,3(9):742-748.
doi: 10.1038/s41477-017-0005-9 pmid: 28848243 |
[37] |
Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X . Spatial organization of chromatin domains and compartments in single chromosomes. Science, 2016,353(6299):598-602.
doi: 10.1126/science.aaf8084 pmid: 27445307 |
[38] |
Fortin JP, Hansen KD . Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol, 2015,16(1):180.
doi: 10.1186/s13059-015-0741-y pmid: 26316348 |
[39] |
Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L, Chen H, Du X, Xie W, Xu X, Huang X, Liu J . 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell, 2017,170(2):367-381.
doi: 10.1016/j.cell.2017.06.029 pmid: 28709003 |
[40] |
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F . Two independent modes of chromatin organization revealed by cohesin removal. Nature, 2017,551(7678):51-56.
doi: 10.1038/nature24281 pmid: 29094699 |
[41] |
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B . Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012,485(7398):376-380.
doi: 10.1038/nature11082 |
[42] |
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012,485(7398):381-385.
doi: 10.1038/nature11049 |
[43] |
Szabo Q, Jost D, Chang JM, Cattoni DI, Papadopoulos GL, Bonev B, Sexton T, Gurgo J, Jacquier C, Nollmann M, Bantignies F, Cavalli G. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci Adv, 2018,4(2): eaar8082.
doi: 10.1126/sciadv.aar5255 pmid: 29507889 |
[44] |
Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang XW. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science, 2018, 362(6413): eaau1783.
doi: 10.1126/science.362.6421.1442 pmid: 30573631 |
[45] |
Hong S, Kim D . Computational characterization of chromatin domain boundary-associated genomic elements. Nucleic Acids Res, 2017,45(18):10403-10414.
doi: 10.1093/nar/gkx738 pmid: 28977568 |
[46] |
Yu M, Ren B . The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol, 2017,33:265-289.
doi: 10.1146/annurev-cellbio-100616-060531 pmid: 28783961 |
[47] |
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G . Three- dimensional folding and functional organization principles of the Drosophila genome. Cell, 2012,148(3):458-472.
doi: 10.1016/j.cell.2012.01.010 |
[48] |
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM . Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J, 2017,36(24):3573-3599.
doi: 10.15252/embj.201798004 pmid: 29217591 |
[49] |
Lazar NH, Nevonen KA, O’Connell B, McCann C, O’Neill RJ, Green RE, Meyer TJ, Okhovat M, Carbone L,. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res, 2018,28(7):983-997.
doi: 10.1101/gr.233874.117 pmid: 29914971 |
[50] |
Dixon JR, Gorkin DU, Ren B . Chromatin domains: the unit of chromosome organization. Mol Cell, 2016,62(5):668-680.
doi: 10.1016/j.molcel.2016.05.018 pmid: 27259200 |
[51] |
Ramírez F, Bhardwaj V, Arrigoni L, Lam KC, Grüning BA, Villaveces J, Habermann B, Akhtar A, Manke T . High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat Commun, 2018,9(1):189.
doi: 10.1038/s41467-017-02525-w pmid: 29335486 |
[52] |
Zhan YX, Mariani L, Barozzi I, Schulz EG, Blüthgen N, Stadler M, Tiana G, Giorgetti L . Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res, 2017,27(3):479-490.
doi: 10.1101/gr.212803.116 pmid: 28057745 |
[53] |
Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler S, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S . Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 2015,161(5):1012-1025.
doi: 10.1016/j.cell.2015.04.004 pmid: 25959774 |
[54] |
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA . Formation of chromosomal domains by loop extrusion. Cell Rep, 2016,15(9):2038-2049.
doi: 10.1016/j.celrep.2016.04.085 pmid: 27210764 |
[55] |
Levine M, Cattoglio C, Tjian R . Looping back to leap forward: transcription enters a new era. Cell, 2014,157(1):13-25.
doi: 10.1016/j.cell.2014.02.009 |
[56] |
Gibcus JH, Dekker J . The hierarchy of the 3D genome. Mol Cell, 2013,49(5):773-782.
doi: 10.1016/j.molcel.2013.02.011 pmid: 23473598 |
[57] |
Dekker J, Marti-Renom MA, Mirny LA . Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet, 2013,14(6):390-403.
doi: 10.1038/nrg3454 pmid: 23657480 |
[58] |
Chung IM, Ketharnathan S, Kim SH, Thiruvengadam M, Rani MK, Rajakumar G . Making sense of the tangle: insights into chromatin folding and gene regulation. Genes (Basel), 2016,7(10):71.
doi: 10.3390/genes7100071 pmid: 27669308 |
[59] |
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014,159(7):1665-1680.
doi: 10.1016/j.cell.2014.11.021 |
[60] |
Weber B, Zicola J, Oka R, Stam M . Plant enhancers: a call for discovery. Trends Plant Sci, 2016,21(11):974-987.
doi: 10.1016/j.tplants.2016.07.013 pmid: 27593567 |
[61] |
Rodriguez-Granados NY, Ramirez-Prado JS, Veluchamy A, Latrasse D, Raynaud C, Crespi M, Ariel F, Benhamed M . Put your 3D glasses on: plant chromatin is on show. . Exp Bot, 2016,67(11):3205-3221.
doi: 10.1093/jxb/erw168 pmid: 27129951 |
[62] |
Cavalli G, Misteli T . Functional implications of genome topology. Nat Struct Mol Biol, 2013,20(3):290.
doi: 10.1038/nsmb.2474 |
[63] |
Denker A, De Laat W . The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev, 2016,30(12):1357-1382.
doi: 10.1101/gad.281964.116 pmid: 27340173 |
[64] |
Sotelo J, Esposito D, Duhagon MA, Banfield K, Mehalko J, Liao HL, Stephens RM, Harris TJR, Munroe DJ, Wu XL . Long-range enhancers on 8q24 regulate c-Myc. PNAS, 2010,107(7):3001-3005.
doi: 10.1073/pnas.0906067107 pmid: 20133699 |
[65] |
Acemel RD, Maeso I, Gómez‐Skarmeta JL. Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals. Wiley Int Rev, 2017,6(3):e265.
doi: 10.1002/wdev.265 pmid: 28251841 |
[66] |
Crevillén P, Sonmez C, Wu Z, Dean C . A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J, 2013,32(1):140-148.
doi: 10.1038/emboj.2012.324 |
[67] |
Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, Crespi M . Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell, 2014,55(3):383-396.
doi: 10.1016/j.molcel.2014.06.011 pmid: 25018019 |
[68] |
Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ . Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell, 2015,162(1):108-119.
doi: 10.1016/j.cell.2015.05.048 pmid: 26119342 |
[69] |
Bi X, Cheng YJ, Hu B, Ma X, Wu R, Wang JW, Liu C . Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res, 2017,27(7):1162-1173.
doi: 10.1101/gr.215186.116 pmid: 28385710 |
[70] |
Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, Uzawa S, Dekker J, Meyer BJ,. Condensin- driven remodelling of X chromosome topology during dosage compensation. Nature, 2015,523(7559):240-244.
doi: 10.1038/nature14450 pmid: 26030525 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: