遗传 ›› 2020, Vol. 42 ›› Issue (4): 388-402.doi: 10.16288/j.yczz.19-347
任巧玲1, 张家庆1, 陆东锋2, 王璟1, 陈俊峰1, 马强1, 白献晓1, 郭红霞1, 高彬文1, 邢宝松1()
收稿日期:
2019-11-14
修回日期:
2020-02-29
出版日期:
2020-04-20
发布日期:
2020-03-26
通讯作者:
邢宝松
E-mail:baosong@126.com
作者简介:
任巧玲,硕士,副研究员,研究方向:猪的育种与营养。E-mail: 基金资助:
Qiaoling Ren1, Jiaqing Zhang1, Dongfeng Lu2, Jing Wang1, Junfeng Chen1, Qiang Ma1, Xianxiao Bai1, Hongxiao Guo1, Binwen Gao1, Baosong Xing1()
Received:
2019-11-14
Revised:
2020-02-29
Online:
2020-04-20
Published:
2020-03-26
Contact:
Xing Baosong
E-mail:baosong@126.com
Supported by:
摘要:
初产母猪断奶后能否正常发情对养猪生产影响重大,也是初产母猪被淘汰的主要原因。本研究以乏情和发情初产母猪为研究对象,首次利用RNA-seq技术对其下丘脑-垂体-卵巢轴中的基因间长链非编码RNAs(long intergenic noncoding RNAs, lincRNAs)进行筛选比较,得到lincRNAs的表达图谱,并对其特征和功能进行了初步分析。结果显示,在乏情和发情初产母猪下丘脑-垂体-卵巢轴中鉴定得到3519个lincRNAs,以发情组为对照共有17个lincRNAs存在差异表达,其中12个表达上调,5个表达下调(FC≥2, P<0.05)。选择4个差异表达的lincRNAs经qRT-PCR验证,其表达水平与测序结果基本一致。对这17个差异表达的lincRNAs进行GO分析、KEGG通路分析及lincRNA-mRNA共表达网络分析,发现这些lincRNAs主要与猪卵母细胞减数分裂成熟、卵巢细胞分化及颗粒细胞凋亡等生殖活动相关。本研究结果丰富了猪lincRNAs数据资源,为进一步深入研究初产母猪的生殖机能提供了理论依据。
任巧玲, 张家庆, 陆东锋, 王璟, 陈俊峰, 马强, 白献晓, 郭红霞, 高彬文, 邢宝松. 乏情和发情初产母猪下丘脑-垂体-卵巢轴中lincRNAs表达谱比较分析[J]. 遗传, 2020, 42(4): 388-402.
Qiaoling Ren, Jiaqing Zhang, Dongfeng Lu, Jing Wang, Junfeng Chen, Qiang Ma, Xianxiao Bai, Hongxiao Guo, Binwen Gao, Baosong Xing. Comparison and analysis of lincRNAs expression profile in the hypothalamic-pituitary-ovarian axis of anestrous and estrous primiparous sows[J]. Hereditas(Beijing), 2020, 42(4): 388-402.
表1
6个cDNA文库测序质量和比对信息统计分析"
样品 | Raw reads | Clean reads | Q30 (%) | Mapped reads | Mapping ratio (%) |
---|---|---|---|---|---|
乏情下丘脑 | 53,306,278 | 52,516,724 | 97.14 | 43,261,322 | 82.38 |
发情下丘脑 | 53,268,878 | 52,432,800 | 97.05 | 41,257,875 | 78.69 |
乏情垂体 | 53,334,742 | 52,476,820 | 96.96 | 43,582,111 | 83.05 |
发情垂体 | 5,331,090 | 52,573,730 | 97.14 | 42,844,655 | 81.49 |
乏情卵巢 | 53,216,626 | 52,195,962 | 96.70 | 41,861,577 | 80.20 |
发情卵巢 | 53,222,368 | 52,209,252 | 96.70 | 41,381,612 | 79.26 |
表2
引物序列信息"
lincRNA | 引物序列(5′→3′) | 复性温度(℃) | 扩增长度(bp) |
---|---|---|---|
TCONS_00049640 | F:TTCTCATAGTCCCCACACAGCC | 60 | 177 |
R:CTTCTTCTTTCTCTTCCTTCCCC | |||
TCONS_00001098 | F:TGAGGAAGAGCAGATAGCCAGTC | 60 | 224 |
R:AGGTATTCAGGGAGGGCATCTA | |||
TCONS_ 00005732 | F:TCCTTTCAGATTGGCTGGTGTT | 60 | 230 |
R:CCACAGTCCAGGTCATCAAGC | |||
TCONS_00012288 | F:GCCCAGTGGATTTCATTTGC | 60 | 185 |
R:TGATACCATTCCTTCCTGTTCTCC | |||
GAPDH | F:GTGAAGGTCGGAGTGAACGGA | 60 | 252 |
R:CCATTTGATGTTGGCGGGAT |
表3
17个差异表达lincRNAs相关信息"
转录本ID | 基因ID | 平均表达量 | P值 | |log2FC| | 调控 | 位置 | |
---|---|---|---|---|---|---|---|
乏情组 | 发情组 | ||||||
TCONS_00035245 | XLOC_018088 | 51.963 | 0.001 | 0.003 | 15.665 | 上调 | Chr.4(+):139486869~139488925 |
TCONS_00006245 | XLOC_003209 | 38.671 | 0.001 | 0.012 | 15.239 | 上调 | Chr.10(+):76375911~76390174 |
TCONS_00038863 | XLOC_019956 | 31.061 | 0.001 | 0.014 | 14.923 | 上调 | Chr.5(-):46693872~46740946 |
TCONS_00039679 | XLOC_020371 | 29.799 | 0.001 | 0.017 | 14.863 | 上调 | Chr.6(+):4250343~:4255208 |
TCONS_00049640 | XLOC_025373 | 68.476 | 3.245 | 0.024 | 4.399 | 上调 | Chr.8(-):31318960~31504408 |
TCONS_00041695 | XLOC_021350 | 36.005 | 0.611 | 0.026 | 5.881 | 上调 | Chr.6(+):91775209~:91809105 |
TCONS_00041696 | XLOC_021350 | 36.005 | 0.611 | 0.026 | 5.881 | 上调 | Chr.6(+):91802418~91809105 |
TCONS_00040987 | XLOC_020986 | 24.830 | 0.001 | 0.027 | 14.600 | 上调 | Chr.6(+):57220929~57255522 |
TCONS_00031805 | XLOC_016327 | 63.453 | 3.241 | 0.029 | 4.291 | 上调 | Chr.3(+):140652352~140654672 |
TCONS_00027978 | XLOC_014327 | 60.319 | 3.346 | 0.034 | 4.172 | 上调 | Chr.2(-):8241783~8244938 |
TCONS_00001098 | XLOC_000568 | 103.316 | 9.467 | 0.042 | 3.448 | 上调 | Chr.1(+):137503074~137507662 |
TCONS_00029995 | XLOC_015378 | 26.051 | 0.306 | 0.045 | 6.414 | 上调 | Chr.3(+):4643111~:4645116 |
TCONS_00032971 | XLOC_016898 | 0.001 | 75.785 | 0.001 | 16.210 | 下调 | Chr.3(-):60770406~:60792096 |
TCONS_00025231 | XLOC_012981 | 0.317 | 30.704 | 0.036 | 6.600 | 下调 | Chr.18(-):57407991~57423170 |
TCONS_00009672 | XLOC_005062 | 0.001 | 26.692 | 0.040 | 14.704 | 下调 | Chr.12(-):952204~:953646 |
TCONS_00005732 | XLOC_002919 | 102.234 | 672.631 | 0.048 | 2.718 | 下调 | Chr.10(+):22597153~22603044 |
TCONS_00012288 | XLOC_006336 | 13.226 | 78.923 | 0.049 | 2.577 | 下调 | Chr.13(+):128701400~128715093 |
表4
17个差异表达的mRNAs相关信息"
转录本ID | 基因名称 | 平均表达量 | P值 | |log2FC| | 调控 | |
---|---|---|---|---|---|---|
乏情组 | 发情组 | |||||
ENSSSCT00000031961 | 125.320 | 3.532 | 0.001 | 5.149 | 上调 | |
ENSSSCT00000036099 | TRAPPC9-002 | 142.211 | 1.300 | 0.012 | 6.744 | 上调 |
ENSSSCT00000022861 | UQCC3-201 | 655.643 | 62.058 | 0.006 | 3.401 | 上调 |
ENSSSCT00000011345 | 404.656 | 37.820 | 0.007 | 3.420 | 上调 | |
ENSSSCT00000015759 | 202.943 | 14.773 | 0.008 | 3.780 | 上调 | |
ENSSSCT00000001351 | PPP1R11-001 | 820.812 | 96.141 | 0.011 | 3.094 | 上调 |
ENSSSCT00000028568 | C14H10orf116-201 | 1129.122 | 18.993 | 0.031 | 5.894 | 上调 |
ENSSSCT00000025288 | 202.590 | 5.782 | 0.038 | 5.131 | 上调 | |
ENSSSCT00000036373 | TSPAN6-002 | 602.708 | 21.985 | 0.042 | 4.777 | 上调 |
ENSSSCT00000001615 | SLA-DRB1-201 | 229.961 | 4.358 | 0.046 | 5.722 | 上调 |
ENSSSCT00000016351 | MMP13-201 | 3706.129 | 5.799 | 0.049 | 9.320 | 上调 |
ENSSSCT00000012778 | 18.317 | 803.462 | 7.06E-05 | 5.455 | 下调 | |
ENSSSCT00000022502 | 7.887 | 220.445 | 0.001 | 4.805 | 下调 | |
ENSSSCT00000000207 | TUBA1C-201 | 552.531 | 7980.832 | 0.002 | 3.852 | 下调 |
ENSSSCT00000032751 | TXLNG-002 | 16.643 | 238.873 | 0.003 | 3.843 | 下调 |
ENSSSCT00000033602 | PGRMC1-003 | 22.350 | 184.633 | 0.020 | 3.046 | 下调 |
ENSSSCT00000029673 | 75.697 | 434.230 | 0.035 | 2.520 | 下调 |
[1] | Zhou DS, Zhuo Y, Che LQ, Lin Y, Fang ZF, Wu D . Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts. Mol Biol Rep, 2014,41(7):4733-4742. |
[2] | Kong LJ, Wang AG, Fu JL, Lai CH, Wang XF, Lin HC . Peroxisome proliferator-activated recptor γ is involved in weaning to estrus of primiparous sows by regulating the expression of hormone genes in hypothalamus-pituitary- ovary axis. Asian-Aust J Anim Sci, 2007,20(3):340-350. |
[3] | Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JS, Ozbek MN, Imamoglu S, Akalin NS, Yuksel B, Rahily SO , Semple RK . TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet, 2009,41(3):354-358. |
[4] | Lehman MN, Coolen LM, Goodman RL . Minireview: Kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of Gonadotropin-Releasing hormone secretion. Endocrinology, 2010,151(8):3479-3489. |
[5] | Song S, Cui P, Wang YY, Jiang SD, Zhang XR, Fang FG, Li SB . Expression of neurokinin B in hypothalamus, pituitary and ovary of rats. J Northwest Sci-Tech Univ Agric Fore(Nat Sci Ed), 2015,43(6):7-14, 20. |
宋爽, 崔培, 王尧尧, 蒋书东, 章孝荣, 方富贵, 李书宝 . 神经激肽B在大鼠下丘脑-垂体-卵巢轴上的表达. 西北农林科技大学(自然科学版), 2015,43(6):7-14, 20. | |
[6] | Ulitsky I, Bartel DP . LincRNAs: genomics, evolution, and mechanisms. Cell, 2013,154(1):26-46. |
[7] | Popadin K, Gutierrez-Arcelus M, Dermitzakis ET, Antonarakis SE . Genetic and epigenetic regulation of human lincRNA gene expression. AM J Hum Genet, 2013,93(6):1015-1026. |
[8] | Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang XP, Amit I, Meissner A, Regev A, Regev A, Rinn JL, Root DE, Lander ES . LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2012,477(7364):295-300. |
[9] | Augui S, Nora EP, Heard E . Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet, 2011,12(6):429-442. |
[10] | Li JY, Gao ZL, Wang XY, Liu HB, Zhang Y, Liu ZH . Identification and functional analysis of long intergenic noncoding RNA genes in porcine pre-implantation embryonic development. Sci Rep, 2016,6:38333. |
[11] | Muys BR, Lorenzi JCC, Zanette DL, Bueno RdBLe, Araújo LFd, Dinarte-Santos AR, Alves CP, Ramão A, Molfetta GAd, Vidal DO, Silva WA Jr . Placenta-enriched LincRNAs MIR503HG and LINC00629 decrease migration and invasion potential of JEG-3 cell line. PLoS One, 2016,11(3):e0151560. |
[12] | Amin V, Harris RA, Onuchic V, Jackson AR, Charnecki T, Paithankar S, Lakshmi Subramanian SL, Riehle K, Coarfa C, Milosavljevic A . Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nat Commun, 2015,6:6370-6380. |
[13] | Zhou C, Li S, Deng LL, Guan Y, Chen DK, Yuan XK, Xia TR, He XL, Shan YW, Li CC . Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between yorkshire and wannanhua pig. Genes, 2017,8(8):E203. |
[14] | Zhao YH . Identification and functional analysis of lincRNA based on multi-tissue transcriptome data in mice[Dissertation] . Beijing Institute of Genomics, Chinese Academy of Sciences, 2015. |
赵宇慧 . 基于多组织转录组数据的小鼠lincRNA的鉴定和功能分析[学位论文]. 中国科学院北京基因组研究所, 2015. | |
[15] | Tang ZL, Wu Y, Yang YL, Yang YCT, Wang ZS, Yuan JP, Yang Y, Hua CJ, Fan XH, Niu GG, Zhang YB, Lu ZJ, Li K . Comprehensive analysis of long non-coding RNAs highlights their spatio-temporal expression patterns and evolutional conservation in Sus scrofa. Sci Rep, 2017,7:43166. |
[16] | Li JY, Gao ZL, Wang XY, Liu HB, Zhang Y, Liu ZH . Identification and functional analysis of long intergenic noncoding RNA genes in porcine pre-implantation embryonic development. Sci Rep, 2016,6:38333. |
[17] | Liu KS, Li TP, Ton H, Mao XD, Chen YJ . Advances of long noncoding RNAs-mediated regulation in reproduction. Chin Med J(Engl), 2018,131(2):226-234. |
[18] | Muys BR, Lorenzi JCC, Zanette DL, De Barros Lima E Bueno R, De Araujo LF, Dinarte-Santos AR, Alves CP, Ramao A, De Molfetta GA, Vidal DO, Silva WA, . Placenta-enriched LincRNAs MIR503HG and LINC00629 decrease migration and invasion potential of JEG-3 cell line. PLoS One, 2016,11(3):e0151560. |
[19] | Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL . Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011,25(18):1915-1927. |
[20] | Lv J, Liu H, Yu SH, Liu HB, Cui W, Gao Y, Zheng T, Qin G, Guo J, Zeng TB, Han ZB, Zhang Y, Wu Q . Identification of 4438 novel lincRNAs involved in mouse pre-implantation embryonic development. Mol Gen Genomics, 2015,290(2):685-697. |
[21] | Zhang JY, Lv S, Niu HM, Lei AM . Research progress on the asymmetric division in mammalian oocytes. Hereditas (Beijing), 2018,40(4):279-291. |
张俊玉, 吕珊, 牛慧敏, 雷安民 . 哺乳动物卵母细胞不对称分裂的研究进展. 遗传, 2018,40(4):279-291. | |
[22] | Zhu XL, Qi ST, Liu J, Chen L, Zhang C, Yang SW, OuYang YC, Hou Y, Schatten H, Song YL, Xing FQ, Sun QY . Synaptotagmin1 is required for spindle stability and metaphase-to-anaphase transition in mouse oocytes. Cell Cycle, 2012,11(4):818-826. |
[23] | Solc P, Schultz RM, Motlik J . Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol Hum Reprod, 2010,16(9):654-664. |
[24] | Yang F, Zhang BY, Feng GD, Xiang W, Ma YX, Chen H, Chu MX, Wang PQ . A Mechanistic review of how hypoxic mircroenvironment regulates mammalian ovulation. Hereditas(Beijing), 2016,38(2):109-117. |
杨芳, 张宝云, 冯光德, 向伟, 马云霞, 陈航, 储明星, 王凭青 . 卵巢低氧微环境调节哺乳动物排卵的分子机制. 遗传, 2016,38(2):109-117. | |
[25] | Nanassy L, Lee K, Javor A, Machaty Z . 316 Changes in MPF activity in porcine oocytes following activation by various methods. Reprod Fert Develop, 2006,18(2):265-265. |
[26] | Faerge I, Terry B, Kalous J, Wahl P, Lessl M, Ottesen JL, Hyttel P, Grøndahl C . Resumption of meiosis induced by meiosis-activating sterol has a different signal transduction pathway than spontaneous resumption of meiosis in denuded mouse oocytes cultured in vitro. Biol Reprod, 2001,65(6):1751-1758. |
[27] | Zhang DX, Park WJ, Sun SC, Xu YN, Li YH, Cui XS, Kim NH . Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. J Reprod Dev, 2011,57(1):48-56. |
[28] | Zhang DX, Cui XS, Kim NH . Molecular characterization and polyadenylation-regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotes. Mol Reprod Dev, 2010,77(1):38-50. |
[29] | Liang CG, Su YQ, Fan HY, Schatten H, Sun QY . Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol Endocrinol, 2007,21(9):2037-2055. |
[30] | Lee SE, Kim JH, Kim NH . Inactivation of MAPK affects centrosome assembly, but not actin filament assembly, in mouse oocytes maturing in vitro. Mol Reprod Dev, 2007,74(7):904-911. |
[31] | Lee J, Miyano T, Moor RM . Localisation of phosphorylated MAP kinase during the transition from meiosis I to meiosis II in pig oocytes. Zygote, 2000,8(2):119-125. |
[32] | Lan W, Petznick A, Heryati S, Rifada M, Tong L . Nuclear factor-κB: central regulator in ocular surface inflammation and diseases. Ocul Surf, 2012,10(3):137-148. |
[33] | Siomek A . NF-κB signaling pathway and free radical impact. Acta Biochim Pol, 2012,59(3):323-331. |
[34] | Wullaert A, Bonnet MC, Pasparakis M . NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res, 2011,21(1):146-158. |
[35] | Ling XQ, Wang JK . Techniques for assaying the activity of transcription factor NF-κB. Hereditas (Beijing), 2013,35(5):551-570. |
凌小倩, 王进科 . 转录因子NF-κB活性检测技术. 遗传, 2013,35(5):551-570. | |
[36] | Campbell KJ, Rocha S, Perkins ND . Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Mol Cell, 2004,13(6):853-865. |
[37] | Ma JJ, Ren ZJ, Ma Y, Xu L, Zhao Y, Zheng CG, Fang YH, Xue T, Sun BL, Xiao WH . Targeted knockdown of EGR-1 inhibits IL-8 production and IL-8-mediated invasion of prostate cancer cells through suppressing EGR-1/NF-κB synergy. J Biol Chem, 2009,284(50):34600-34606. |
[38] | Pavlová S, Klucska K, Vašíček D, Ryban L, Harrath AH, Alwasel SH, Sivotkin AV, . The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim Reprod Sci, 2013,140(3-4):180-188. |
[39] | Sirotkin AV, Dekanová P, Harrath AH, Alwasel SH, Vašíček D, . Interrelationships between sirtuin1 and transcription factors P53 and NF-κB(P50/P65) in the control of ovarian cell apoptosis and proliferation. Cell Tissue Res, 2014,358(4):627-632. |
[40] | Cai HQ, Zhang YY, Pypaert M, Walker L, Ferro-Novick S . Mutants in trs120 disrupt traffic from the early endosome to the late Golgi. J Cell Biol, 2005,171(5):823-833. |
[41] | Hu WH, Pendergast JS, Mo XM, Brambilla R, Bracchi- Ricard V, Li F, Walters WM, Blits B, He L, Shaal SM, Bethea JR . NIBP, a novel NIK and IKKβ-binding protein that enhances NF-κB activation. J Biol Chem, 2005,280(32):29233-29241. |
[42] | Balboula AZ, Stein P, Schultz RM, Schindler K . Knockdown of RBBP7 unveils a requirement of histone deacetylation for CPC function in mouse oocytes. Cell Cycle, 2014,13(4):600-611. |
[43] | Balboula AZ, Stein P, Schultz RM, Schindler K . RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod, 2015,92(4):105-117. |
[1] | 高磊,沈敏,甘尚权,杨井泉,张译元. 绵羊CCNG1基因克隆及表达分析[J]. 遗传, 2015, 37(4): 374-381. |
[2] | 高磊,甘尚权,杨井泉,杨剑波,梁耀伟,阿不都艾尼·努拉洪,沈敏. 绵羊发情周期不同组织Cry1 mRNA转录水平相对定量研究[J]. 遗传, 2013, 35(1): 85-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: