遗传 ›› 2020, Vol. 42 ›› Issue (4): 363-373.doi: 10.16288/j.yczz.19-351
冯秀晶, 易红梅, 任星旭, 任佳丽, 葛建镕, 王凤格()
收稿日期:
2019-11-18
修回日期:
2020-03-12
出版日期:
2020-04-20
发布日期:
2020-03-31
通讯作者:
王凤格
E-mail:gege0106@163.com
作者简介:
冯秀晶,博士,研究方向:转基因植物检测。E-mail: 基金资助:
Xiujing Feng, Hongmei Yi, Xingxu Ren, Jiali Ren, Jianrong Ge, Fengge Wang()
Received:
2019-11-18
Revised:
2020-03-12
Online:
2020-04-20
Published:
2020-03-31
Contact:
Wang Fengge
E-mail:gege0106@163.com
Supported by:
摘要:
随着分子生物学技术的不断发展和需求的多样化,用于核酸检测的各种PCR衍生技术应运而生。数字PCR是一种单分子水平的大规模分区扩增定量核酸检测技术。该技术以微腔室/微孔或微滴作为PCR反应器,无需校准物和绘制标准曲线即可实现对样品初始浓度的绝对定量,具有高灵敏度、高特异性和高精确度的特点。本文详细介绍了数字PCR的技术发展史、作用原理以及仪器平台类型,系统阐述了数字PCR在转基因检测、疾病诊断、环境及食品监管等方面的应用概况,并对该技术的应用前景进行了展望,以期对未来数字PCR的开发利用提供参考。
冯秀晶, 易红梅, 任星旭, 任佳丽, 葛建镕, 王凤格. 数字PCR技术及其在检测领域的应用[J]. 遗传, 2020, 42(4): 363-373.
Xiujing Feng, Hongmei Yi, Xingxu Ren, Jiali Ren, Jianrong Ge, Fengge Wang. Digital PCR and its application in biological detection[J]. Hereditas(Beijing), 2020, 42(4): 363-373.
表1
dPCR仪比较"
类型 | 供应商 | 仪器型号 | 分散成反应单元数目和体积 | 通量 | 进样量 (µL) | 通道数 | 特点 |
---|---|---|---|---|---|---|---|
微流控 芯片数 字PCR 仪 | 美国 Fluidigm | BioMark HD | 12 paneL/芯片,765个反应单元/paneL,9180个反应单元/芯片,6 nL /反应单元 | 12 | 8 | 5 | 全自动微流体控制,可实现12个样品进样和微流体分配,成本高,耗时4 h |
BioMarkEP1 | 48个阵列/芯片,770个腔室/阵列,36,960个反应单元/芯片,0.85 nL/反应单元 | 48 | 4 | 5 | 全自动微流体控制,可实现48个样品进样和微流体分配,成本高,耗时4 h | ||
美国 ThermoFisher (Life- technlogies) | QuantStudio3D 数字PCR系统 | 4个板,20,000个反应孔/芯片,0.72 nL/反应单元 | 24 | 16 | 3 | 全自动,减少移液过程,基于微加工单晶硅芯片,样本之间完全隔离,全程闭管,防止交叉污染,无“死区”;通量低,每次运行只能分析一个样品 , 耗时4 h | |
OpenArray/ QuantStudio 12K | 48个次级阵列/板,64个反应单元/阵列,共计3072个反应单元/板;33 nL/反应单元 | 4 | 100 | 2 | 全自动芯片处理,全程闭管防止交叉污染,可同时运行4块3072模块,耗时4 h | ||
微滴数 字PCR 仪 | 美国Bio-Rad (QuantaLife) | QX200 ddPCR | 微滴生成器8通道设计,可将8个样品分别制备成20,000个液滴,0.837 nL/微滴 | 1~96 | 20 | 2 | 半自动,常规PCR仪扩增后,利用液滴读取仪读取,操作比较繁琐,配套工具耗材较多,读取耗时较长,防止分散管路堵塞问题 |
美国Bio-Rad (RainDance) | Raindrop ddPCR | 可将1个样品分割成1000万个微滴,5 pL/微滴 | 8 | 25~50 | 2 | 原理与QX200类似,设备和芯片耗材成本昂贵,耗时4 h | |
中国锐讯生物 | DropX-2000 | 20,000~30,000个微滴, <1 nL/微滴 | 2~96 | 20~30 | 4 | 人工上样仅需20 s,后续全部自动化,耗时2.5 h | |
集成微 流微孔 PCR仪 | 法国 Stilla Technologies | Naica™ crystal digital PCR | 25,000~30,000个反应单元/芯片,0.43 nL/微滴 | 12 | 20 | 3 | 集成Sapphire芯片为唯一耗材,人工上样,后续全部自动化,微滴随机平铺成2D阵列,全封闭,无交叉污染,精确到单微滴回溯,耗时2.5 h |
中国小海龟 | BioDigital | 20,000余个液滴/芯片, 0.79 nL/微滴 | 1~96 | 30 | 4 | 芯片式微滴数字PCR,自动分液时间仅需2 min,微滴随机平铺成,无交叉污染,自动读取数据时间为2 min,全封闭,耗时1.5 h |
[1] | Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N . Enzymatic amplification of beta- globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985,230(4732):1350-1354. |
[2] | Higuchi R, Dollinger G, Walsh PS, Griffith R . Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY), 1992,10(4):413-417. |
[3] | Ottesen EA, Hong JW, Quake SR, Leadbetter JR . Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science, 2006,314(5804):1464-1467. |
[4] | White RA, Blainey PC, Fan HC, Quake SR . Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics, 2009,10:116. |
[5] | Kim H, Bartsch MS, Renzi RF, He J, Van de Vreugde JL, Claudnic MR, Patel KD. Automated digital microfluidic sample preparation for next-generation DNA sequencing. J Lab Autom, 2011,16(6):405-414. |
[6] | Chan M, Chan MW, Loh TW, Law HY, Yoon CS, Than SS, Chua JM, Wong CY, Yong WS, Yap YS, Ho GH, Ang P, Lee ASG . Evaluation of nanofluidics technology for high-throughput SNP genotyping in a clinical setting. J Mol Diagn, 2011,13(3):305-312. |
[7] | Spurgeon SL, Jones RC, Ramakrishnan R . High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One, 2008,3(2):e1662 |
[8] | Corbisier P, Bhat S, Partis L, Xie VRD, Emslie KR . Absolute quantification of genetically modified MON810 maize ( Zea mays L.) by digital polymerase chain reaction. Anal Bioanal Chem, 2010,396(6):2143-2150. |
[9] | Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA . Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 1992,13(3):444-449. |
[10] | Li CY . Principle and application of digital PCR. Biotech World, 2014,11:10-13. |
李春勇 . 数字PCR技术原理及应用. 生物技术世界, 2014,11:10-13. | |
[11] | Kalinina O, Lebedeva I, Brown J, Silver J . Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res, 1997,25(10):1999-2004. |
[12] | Vogelstein B, Kinzler KW. Digital PCR . Proc Natl Acad Sci USA, 1999,96(16):9236-9241. |
[13] | Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B . Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA, 2003,100(15):8817-8822. |
[14] | Perkel JM . Life science technologies: The digital PCR revolution. Science, 2014,344(6180):212-214. |
[15] | Dube S, Qin J, Ramakrishnan R . Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One, 2008, 3(8):e2876. |
[16] | Dong LH, Meng Y, Sui ZW, Wang J, Wu LQ, Fu BQ . Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci Rep, 2015,5:13174. |
[17] | Basu AS . Digital assays part I: partitioning statistics and digital PCR. SLAS Technol, 2017,22(4):369-386. |
[18] | Hu JY, Jiang Y, Yang LT . Quantification of genetically modified maize ( Zea mays) MON863 by QuantStudio TM 3D digital PCR. J Agric Biotech , 2016,24(8):1216-1224. |
胡佳莹, 姜羽, 杨立桃 . 利用QuantStudioTM 3D数字PCR分析转基因玉米MON863含量. 农业生物技术学报, 2016,24(8):1216-1224. | |
[19] | Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, Cho J, Kanigan T, Ilyin SE, Horowitz D, Dixon JM, Brenan CJ . Nanoliter high throughput quantitative PCR. Nucleic Acids Res, 2006,34(18):e123. |
[20] | Demeke T, Dobnik D . Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal Bioanal Chem, 2018,410(17):4039-4050. |
[21] | Baker M . Digital PCR hits its stride. Nat Methods, 2012,9(6):541-544. |
[22] | Liao PY, Huang YY . Digital PCR: endless frontier of 'Divide and Conquer'. Micromachines, 2017,8(8):231. |
[23] | General Office of the Ministry of Agriculture. Guidelines for the safety assessment of agricultural genetically modified organisms. 2017. |
农业部办公厅. 农业转基因生物(植物、动物、动物用微生物)安全评价指南. 2017. | |
[24] | Hua ZH, Zhu XF, Lin HS, Gao ZY, Qian Q, Yan MX, Huang DN . Studies of the integration and expression of exogenes in transgenic rice obtained via particle bombardment transformation. Acta Genetica Sinica, 2001,28(11):1012-1018. |
华志华, 朱雪峰, 林鸿生, 高振宇, 钱前, 颜美仙, 黄大年 . 基因枪转化获得的转基因水稻、中外源基因整合与表达规律研究. 遗传学报, 2001,28(11):1012-1018. | |
[25] | Sridevi G, Sabapathi N, Meena P, Nandakumar R, Samiyappan R, Muthukrishnan S, Veluthambi K . Transgenic indica rice variety Pusa Basmati 1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. J Plant Biochem Biot, 2003,12(2):93-101. |
[26] | Bubner B, Baldwin IT . Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep, 2004,23(5):263-271. |
[27] | Prior FA, Tackaberry ES, Aubin RA, Casley WL . Accurate determination of zygosity in transgenic rice by real-time PCR does not require standard curves or efficiency correction. Transgenic Res, 2006,15(2):261-265. |
[28] | Mieog JC, Howitt CA, Ral JP . Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay. BMC Plant Biol, 2013,13:71. |
[29] | Fritsch L, Fischer R, Wambach C, Dudek M, Schillberg S, Schröper F . Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize. Transgenic Res, 2015,24(4):615-623. |
[30] | Passricha N, Saifi S, Khatodia S, Tuteja N . Assessing zygosity in progeny of transgenic plants: current methods and perspectives. J Biol Methods, 2016,3(3):e46. |
[31] | Bubner B, Gase K, Baldwin IT . Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnol, 2004,4:14. |
[32] | Xu XL, Peng C, Wang XF, Chen XY, Wang Q, Xu JF . Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize. Transgenic Res, 2016,25(6):855-864. |
[33] | Collier R, Dasgupta K, Xing YP, Hernandez BT, Shao M, Rohozinski D, Kovak E, Lin J, de Oliveira MLP, Stover E, McCue KF, Harmon FG, Blechl A, Thomson JG, Thilmony R . Accurate measurement of transgene copy number in crop plants using droplet digital PCR. Plant J, 2017,90(5):1014-1025. |
[34] | Global status of commercialized biotech/gm crops in 2018. Biotech crop adoption surges as economic benefits accumulate 23 years. ISAAA, brief 54. |
[35] | Gruère GP, Rao SR . A review of international labeling policies of genetically modified food to evaluate india's proposed rule. AgBioForum, 2007,10(1):51-64. |
[36] | Kamle S, Ali S . Genetically modified crops: Detection strategies and biosafety issues. Gene, 2013,522(2):123-132. |
[37] | Milavec M, Dobnik D, Yang LT, Zhang DB, Gruden K, Zel J . GMO quantification: valuable experience and insights for the future. Anal Bioanal Chem, 2014,406(26):6485-6497. |
[38] | Scholtens IM, Kok EJ, Hougs L, Molenaar B, Thissen JT, van der Voet H . Increased efficacy for in-house validation of real-time PCR GMO detection methods. Anal Bioanal Chem, 2010,396(6):2213-2227. |
[39] | Berdal KG, Holst-jensen A. Roundup Ready ® soybean event-specific real-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses . Eur Food Res Technol, 2001,213:432-438. |
[40] | Burns MJ, Burrell AM, Foy CA . The applicability of digital PCR for the assessment of detection limits in GMO analysis. Eur Food Res Technol, 2010,231(3):353-362. |
[41] | Gerdes L, Busch U, Pecoraro S . Parallelised real-time PCR for identification of maize GMO events. Eur Food Res Technol, 2012,234(2):315-322. |
[42] | Köppel R, Bucher T . Rapid establishment of droplet digital PCR for quantitative GMO analysis. Eur Food Res Technol, 2015,241(3):427-439. |
[43] | Fu HB, Yan CJ, Li S, Liu XC, Zhang M . Application of digital PCR technology in detection of genetically modified components. Liaoning Agric Sci, 2017, ( 1):50-53. |
付海滨, 闫超杰, 李姝, 刘晓超, 张敏 . 数字PCR技术在转基因成分检测中的应用. 辽宁农业科学, 2017, ( 1):50-53. | |
[44] | Morisset D, Štebih D, Milavec M, Gruden K, Žel J . Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One, 2013,8(5):e62583. |
[45] | Gerdes L, Iwobi A, Busch U, Pecoraro S . Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol Detect Quantif, 2016,7:9-20. |
[46] | Félix-Urquídez D, Pérez-Urquiza M, Valdez Torres JB, León-Félix J, García-Estrada R, Acatzi-Silva A . Development, optimization, and evaluation of a duplex droplet digital PCR assay to quantify the T-nos/hmg copy number ratio in genetically modified maize. Anal Chem, 2016,88(1):812-819. |
[47] | Dobnik D, Štebih D, Blejec A, Morisset D, Žel J . Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection. Sci Rep, 2016,6:35451. |
[48] | Whale AS, Huggett JF, Tzonev S . Fundamentals of multiplexing with digital PCR. Biomol Detect Quantif, 2016,10:15-23. |
[49] | Pretto D, Maar D, Yrigollen CM, Regan J, Tassone F . Screening newborn blood spots for 22q11.2 deletion syndrome using multiplex droplet digital PCR. Clin Chem, 2015,61(1):182-190. |
[50] | Dobnik D, Spilsberg B, Bogožalec Košir AB, Holst-Jensen A, Žel J . Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction. Anal Chem, 2015,87(16):8218-8226. |
[51] | Košir AB, Spilsberg B, Holst-Jensen A, Žel J, Dobnik D . Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Sci Rep, 2017,7(1):8601. |
[52] | Zimmermann BG, Grill S, Holzgreve W, Zhong XY, Jackson LG, Hahn S . Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? Prenat Diagn, 2008,28(12):1087-1093. |
[53] | Fan MHC, Blumenfeld YJ, El-Sayed YY, Chueh J, Quake SR . Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. Am J Obstet Gynecol, 2009, 200(5): 543.e1-547.e7. |
[54] | Usher CL, McCarroll SA . Complex and multi-allelic copy number variation in human disease. Brief Funct Genomics, 2015,14(5):329-338. |
[55] | Barrett AN, McDonnell TC, Chan KC, Chitty LS . Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem, 2012,58(6):1026-1032. |
[56] | Trypsteen W, Kiselinova M, Vandekerckhove L, De Spiegelaere W . Diagnostic utility of droplet digital PCR for HIV reservoir quantification. J Virus Erad, 2016,2(3):162-169. |
[57] | Sedlak RH, Jerome KR . Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis, 2013,75(1):1-4. |
[58] | Hennekinne JA, De Buyser ML, Dragacci S . Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev, 2012,36(4):815-836. |
[59] | Pinchuk IV, Beswick EJ, Reyes VE . Staphylococcal enterotoxins. Toxins, 2010,2(8):2177-2197. |
[60] | Stenfors Arnesen LP, Fagerlund A, Granum PE . From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev, 2008,32(4):579-606. |
[61] | Coudray-Meunier C, Fraisse A, Martin-Latil S, Guillier L, Delannoy S, Fach P, Perelle S . A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples. Int J Food Microbiol, 2015,201:17-26. |
[62] | Wilson M, Glaser KC, Adams-Fish D, Boley M, Mayda M, Molestina RE . Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani. Exp Parasitol, 2015,149:24-31. |
[63] | Strand DA, Holst-Jensen A, Viljugrein H, Edvardsen B, Klaveness D, Jussila J, Vralstad T . Detection and quantification of the crayfish plague agent in natural waters: direct monitoring approach for aquatic environments. Dis Aquat Organ, 2011,95(1):9-17. |
[64] | Rački N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M . Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods, 2014,10(1):42. |
[65] | Doi H, Takahara T, Minamoto T, Matsuhashi S, Uchii K, Yamanaka H . Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environ Sci Technol, 2015,49(9):5601-5608. |
[66] | Masago Y, Konta Y, Kazama S, Inaba M, Imagawa T, Tohma K, Saito M, Suzuki A, Oshitani H, Omura T . Comparative evaluation of real-time PCR methods for human noroviruses in wastewater and human stool. PLoS One, 2016,11(8):e0160825. |
[67] | Huang WC, Chou YP, Kao PM, Hsu TK, Su HC, Ho YN, Yang YC, Hsu BM . Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters. Water Sci Technol, 2016,73(8):1832-1841. |
[68] | Rački N, Morisset D, Gutierrez-Aguirre I, Ravnikar M . One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem, 2014,406(3):661-667. |
[69] | Cao Y, Raith MR, Griffith JF . Droplet digital PCR for simultaneous quantification of general and human- associated fecal indicators for water quality assessment. Water Res, 2015,70:337-349. |
[70] | Mock U, Hauber I, Fehse B . Digital PCR to assess gene- editing frequencies (GEF-dPCR) mediated by designer nucleases. Nat Protoc, 2016,11(3):598-615. |
[71] | Findlay SD, Vincent KM, Berman JR, Postovit LM . A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS One, 2016,11(4):e0153901. |
[72] | Miyaoka Y, Chan AH, Judge LM, Yoo J, Huang M, Nguyen TD, Lizarraga PP, So PL, Conklin BR . Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods, 2014,11(3):291-293. |
[73] | Gao R, Feyissa BA, Croft M, Hannoufa A . Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta, 2018,247(4):1043-1050. |
[74] | Liu CX, Geng LZ, Xu JP . Detection methods of genome editing in plants. Hereditas (Beijing), 2018,40(12):1075-1091. |
刘春霞, 耿立召, 许建平 . 植物基因组编辑检测方法. 遗传, 2018,40(12):1075-1091. | |
[75] | Waltz E . CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol, 2016,34(6):582. |
[76] | Huang S, Weigel D, Beachy RN, Li J . A proposed regulatory framework for genome-edited crops. Nat Genet, 2016,48(2):109-111. |
[77] | Waltz E . Gene-edited CRISPR mushroom escapes US regulation. Nature, 2016,532(7599):293. |
[1] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[2] | 于军. 实现“终极版”核苷酸测序仪的技术要素[J]. 遗传, 2018, 40(11): 929-937. |
[3] | 刘晓晶,楼慧强. DNA复制研究步入单分子时代[J]. 遗传, 2017, 39(9): 771-774. |
[4] | 柳延虎, 王璐, 于黎. 单分子实时测序技术的原理与应用[J]. 遗传, 2015, 37(3): 259-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: