[1] | Yu J, Wong GK . Genome biology: the second modern synthesis. Genom Proteom Bioinform, 2005,3(1):3-4. | [2] | Yu J . Life on two tracks. Genom Proteom Bioinform, 2012,10(3):123-126. | [3] | Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH . DNA sequencing at 40: past, present and future. Nature, 2017,550(7676):345-353. | [4] | Zhou XG, Ren LF, Meng QS, Li YT, Yu YD, Yu J . The next-generation sequencing technology and application. Protein Cell, 2010,1(6):520-536. | [5] | Zhou XG, Ren LF, Li YT, Zhang M, Yu YD, Yu J . The next-generation sequencing technology: A technology review and future perspective. Sci China Life Sci, 2010,53(1):44-57. | [6] | Feng YX, Zhang YC, Ying CF, Wang DQ, Du CL . Nanopore-based fourth-generation DNA sequencing technology. Genom Proteom Bioinform, 2015,13(1):4-16. | [7] | Pretorius IS, Boeke JD . Yeast 2.0-connecting the dots in the construction of the world's first functional synthetic eukaryotic genome. FEMS Yeast Res, 2018,18(4). doi: 10.1093/femsyr/foy032. | [8] | Damiati S, Mhanna R, Kodzius R, Ehmoser EK . Cell-free approaches in synthetic biology utilizing microfluidics. Genes, 2018,9(3). doi: 10.3390/genes9030144. | [9] | Zhang TB, Zhang CL, Dong ZL, Guan YF . Determination of base binding strength and base stacking interaction of DNA duplex using atomic force microscope . Sci Rep, 2015,5:9143. | [10] | Kilchherr F, Wachauf C, Pelz B, Rief M, Zacharias M , Dietz H. Single-molecule dissection of stacking forces in DNA. Science, 2016, 353(6304): aaf5508. doi: https://doi. org/10.1126/science.aaf5508. | [11] | Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S McNeill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ, Turner DJ. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods, 2018,15(3):201-206. | [12] | Wanunu M . Nanopores: A journey towards DNA sequencing. Phys Life Rev, 2012,9(2):125-158. | [13] | Guo J, Lu JT, Feng YX, Chen J, Peng JB, Lin ZR, Meng XZ, Wang ZC, Li XZ, Wang EG, Jiang Y . Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science, 2016,352(6283):321-325. | [14] | 于军等 . 基因组学与精准医学.上海交通大学出版社. 2017. ISBN: 9787313181831. | [15] | McGinn S, Bauer D, Brefort T, Dong L, El-Sagheer A, Elsharawy A, Evans G, Falk-Serqvist E, Forster M, Fredriksson S, Freeman P, Freitag C, Fritzsche J, Gibson S, Gullberg M, Gut M, Heath S, Heath- |
[1] |
韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[2] |
王卓, 申笑涵, 施奇惠. 单细胞基因组测序技术新进展及其在生物医学中的应用[J]. 遗传, 2021, 43(2): 108-117. |
[3] |
邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
[4] |
周俊, 赵成成, 吴霄, 石俊松, 周荣, 吴珍芳, 李紫聪. 猪耳成纤维细胞转录组异质性及对核移植胚胎发育的潜在影响[J]. 遗传, 2020, 42(9): 898-915. |
[5] |
赵利楠, 王娜, 杨国良, 苏现斌, 韩泽广. 基于单细胞靶向测序探究基因碱基突变的方法[J]. 遗传, 2020, 42(7): 703-712. |
[6] |
冯秀晶, 易红梅, 任星旭, 任佳丽, 葛建镕, 王凤格. 数字PCR技术及其在检测领域的应用[J]. 遗传, 2020, 42(4): 363-373. |
[7] |
屈亮, 李素, 仇华吉. 单细胞RNA测序技术在病毒研究中的应用[J]. 遗传, 2020, 42(3): 269-277. |
[8] |
张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
[9] |
吴保军,王卓,董宇,邓宇亮,施奇惠. 肺癌恶性胸腔积液中稀有肿瘤细胞的鉴定与单细胞测序分析[J]. 遗传, 2019, 41(2): 175-184. |
[10] |
姚雅馨,喇永富,狄冉,刘秋月,胡文萍,王翔宇,储明星. 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J]. 遗传, 2018, 40(8): 620-631. |
[11] |
康岚, 陈嘉瑜, 高绍荣. 中国细胞重编程和多能干细胞研究进展[J]. 遗传, 2018, 40(10): 825-840. |
[12] |
刘晓晶,楼慧强. DNA复制研究步入单分子时代[J]. 遗传, 2017, 39(9): 771-774. |
[13] |
周彦, 王超杰, 朱纯超, 陈江荣, 程酩, 邓宇亮, 郭妍. 组织单腺体内单细胞的基因变异分析方法[J]. 遗传, 2017, 39(8): 753-762. |
[14] |
柳延虎, 王璐, 于黎. 单分子实时测序技术的原理与应用[J]. 遗传, 2015, 37(3): 259-268. |
[15] |
孙帅, 邓宇亮. 肺癌循环肿瘤细胞的单细胞EGFR基因突变检测[J]. 遗传, 2015, 37(12): 1251-1257. |
|