[1] |
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB . Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater, 2019,390:121974.
|
[2] |
Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR . Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Front Chem, 2017,5:6.
|
[3] |
Patel S, Patel P, Bakshi SR . Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology, 2017,69(2):245-263.
|
[4] |
Zhang R, Wu AQ, Shi LL , A review of the performance evaluation and application of nano-silver antibacterial agents. J Yangtze Univ (Nat Sci Ed), 2015,12(25):23-25.
|
|
张然, 吴安琪, 施伶俐 . 纳米银抗菌剂性能评价和应用现状综述. 长江大学学报(自科版), 2015,12(25):23-25.
|
[5] |
Gamucci O, Bertero A, Malvindi MA, Sabella S, Pompa PP, Mazzolai B, Bardi G . Detection of fluorescent nanoparticle interactions with primary immune cell subpopulations by flow cytometry. J Vis Exp, 2014, ( 85):51345.
|
[6] |
Singh NP, Mccoy MT, Tice RR, Schneider EL . A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 1988,175(1):184-191.
|
[7] |
Olive PL, Banáth JP, Durand RE . Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res, 1990,122(1):86-94.
|
[8] |
Kwon JY, Lee SY, Koedrith P, Lee JY, Kim KM, Lee JK, Jeong J, Maeng EH, Lee BJ, Seo YR . Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutat Res Genet Toxicol Environ Mutagen, 2014,761:1-9.
|
[9] |
Krüger CT, Fischer BM, Armant O, Morath V, Strähle U, Hartwig A . The in vitro PIG-A gene mutation assay: glycosylphosphatidylinositol (GPI)-related genotype-to- phenotype relationship in TK6 cells. Arch Toxicol, 2016,90(7):1729-1736.
|
[10] |
Rees BJ, Tate M, Lynch AM, Thornton CA, Jenkins GJ, Walmsley RM, Johnson GE . Development of an in vitro PIG-A gene mutation assay in human cells. Mutagenesis, 2017,32(2):283-297.
|
[11] |
Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M . Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 2014,8(3):233-278.
|
[12] |
Sheng LP, Wang ZD, Zhou PK . The genetic toxicity and toxicology mechanism of metal nano materials. Chin J Prev Med, 2015, ( 9):831-834.
|
|
沈丽萍, 王治东, 周平坤 . 金属纳米材料的遗传毒性及遗传毒理机制. 中华预防医学杂志, 2015, ( 9):831-834.
|
[13] |
Du XM, Gao SX, Hong LL, Zheng X, Zhou QY, Wu JH . Genotoxicity evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the Ames test. Mutat Res, 2019,838:22-27.
|
[14] |
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M . Silver nanoparticles as potential antibacterial agents. Molecules, 2015,20(5):8856-8874.
|
[15] |
Lubick N . Nanosilver toxicity: ions, nanoparticles--or both?. Environ Sci Technol, 2008,42(23):8617.
|
[16] |
Xin Q, Zhang Q, Cheng JP . Effects of silver nanoparticles and silver ions on the early development of zebrafish embryos and toxicity mechanisms. Asian J Ecotoxicol, 2015,10(4):55-64.
|
|
辛琦, 章强, 程金平 . 纳米银和银离子对斑马鱼胚胎早期生长发育的影响及作用机制. 生态毒理学报, 2015,10(4):55-64.
|
[17] |
Kawata K, Osawa M, Okabe S . In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol, 2009,43(15):6046-6051.
|
[18] |
Hsiao IL, Hsieh YK, Wang CF, Chen IC, Huang YJ . Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ Sci Technol, 2015,49(6):3813-3821.
|
[19] |
Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB . Impact of silver nanoparticles on human cells:effect of particle size. Nanotoxicology, 2010,4(3):319-330.
|
[20] |
Tavares P, Balbinot F, de Oliveira HM, Fagundes GE, Venâncio M, Ronconi JVV, Merlini A, Streck EL, da Silva Paula MM, de Andrade VM. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo. J Nanopart Res, 2012,14(4):791-800.
|
[21] |
Gong Y, Ji YJ, Liu F, Li J, Cao Y . Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. J Appl Toxicol, 2017,37(8):895-901.
|
[22] |
Dobrzyńska MM, Gajowik A, Radzikowska J, Lankoff A, Dušinská M, Kruszewski M . Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology, 2014,315(1):86-91.
|
[23] |
Proquin H, Rodríguez-Ibarra C, Moonen CGJ, Ortega IMU, Briedé JJ, de Kok TM, van Loveren H, Chirino YI. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano- sized fractions. Mutagenesis, 2017,32(1):139-149.
|
[24] |
Wen HR, Shao AL, Chen L, Dan M, Hu YP, Wang X, Xu LM . Selection of a suitable method for the evaluation of genetic toxicity of nanomaterials. Carcinog Teratog Mutag, 2018,30(4):326-331.
|
|
文海若, 邵安良, 陈亮, 淡墨, 胡燕平, 王雪, 徐丽明 . 适合纳米材料遗传毒性评价方法的选择. 癌变·畸变·突变, 2018,30(4):326-331.
|
[25] |
Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M . Can the comet assay be used reliably to detect nanoparticle- induced genotoxicity? Environ Mol Mutagen, 2015,56(2):82-96.
|