遗传 ›› 2021, Vol. 43 ›› Issue (10): 962-971.doi: 10.16288/j.yczz.21-186
李茜(), 王浩宇(), 曹悦岩, 朱强, 舒潘寅, 侯婷芸, 王雨婷, 张霁()
收稿日期:
2021-05-26
修回日期:
2021-07-29
出版日期:
2021-10-20
发布日期:
2021-08-10
通讯作者:
张霁
E-mail:lixi1105@foxmail.com;wanghy0707@gmail.com;zhangj@scu.edu.cn
作者简介:
李茜,在读硕士研究生,专业方向:法医遗传学。E-mail: 基金资助:
Xi Li(), Haoyu Wang(), Yueyan Cao, Qiang Zhu, Panyin Shu, Tingyun Hou, Yuting Wang, Ji Zhang()
Received:
2021-05-26
Revised:
2021-07-29
Online:
2021-10-20
Published:
2021-08-10
Contact:
Zhang Ji
E-mail:lixi1105@foxmail.com;wanghy0707@gmail.com;zhangj@scu.edu.cn
Supported by:
摘要:
微单倍型(microhaplotype, MH)是在一定DNA片段范围之内,由至少两个单核苷酸多态性位点组成的遗传标记。MH兼具无stutter伪峰、多态性丰富以及扩增子较小等特点,有望成为法医学上的一种新型遗传标记。为了从全基因组维度上分析MH的特征,进一步发掘其应用潜能,本研究基于千人基因组计划中105个中国南方汉族个体的全基因组测序数据,构建了迄今为止最全面的MH数据集。结果表明,人类基因组中350 bp范围之内的MH位点数量共计9,490,075个,且微单倍型分布密度对染色体变异水平具有提示作用。从多种碱基跨度范围对MH的多态性分析表明,其多态性潜能可达到或者超过常用短串联重复序列位点的水平。此外,本文归纳总结了MH组装灵活等特点,并提出了构建微单倍型数据库的方案。
李茜, 王浩宇, 曹悦岩, 朱强, 舒潘寅, 侯婷芸, 王雨婷, 张霁. 微单倍型遗传标记的法医基因组学研究[J]. 遗传, 2021, 43(10): 962-971.
Xi Li, Haoyu Wang, Yueyan Cao, Qiang Zhu, Panyin Shu, Tingyun Hou, Yuting Wang, Ji Zhang. Forensic genomics research on microhaplotypes[J]. Hereditas(Beijing), 2021, 43(10): 962-971.
表1
SNP及MH在不同染色体上的数量统计"
染色体 | #SNPs a | #MHs≤350 bp | #MHs≤150 bp | #MHs≤100 bp | #MHs≤50 bp | ||||
---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | ||
1 | 463,261 | 684,624 | 224,137 | 307,923 | 160,070 | 211,609 | 127,357 | 112,562 | 80,220 |
2 | 485,172 | 697,551 | 235,330 | 312,548 | 167,213 | 213,273 | 132,583 | 113,234 | 82,973 |
3 | 429,260 | 648,976 | 208,260 | 289,892 | 149,992 | 197,993 | 119,687 | 104,404 | 75,230 |
4 | 444,134 | 719,321 | 214,966 | 322,127 | 158,179 | 220,652 | 127,643 | 116,157 | 81,220 |
5 | 369,559 | 536,677 | 179,135 | 240,372 | 127,576 | 164,475 | 101,232 | 87,636 | 63,535 |
6 | 406,810 | 855,491 | 197,195 | 380,915 | 145,792 | 258,670 | 118,720 | 134,514 | 77,942 |
7 | 357,021 | 560,129 | 172,793 | 252,329 | 125,618 | 172,901 | 100,917 | 91,761 | 64,047 |
8 | 323,908 | 538,902 | 157,309 | 239,578 | 116,180 | 163,404 | 93,911 | 85,902 | 60,124 |
9 | 264,750 | 408,354 | 128,051 | 183,076 | 94,273 | 125,067 | 75,556 | 65,695 | 47,502 |
10 | 310,578 | 493,463 | 150,444 | 221,083 | 109,703 | 151,560 | 88,309 | 80,883 | 56,820 |
11 | 290,938 | 445,661 | 140,840 | 199,579 | 102,589 | 136,071 | 81,970 | 71,787 | 52,025 |
12 | 287,513 | 430,602 | 139,153 | 194,229 | 100,173 | 133,241 | 79,814 | 70,791 | 50,312 |
13 | 217,352 | 335,132 | 105,264 | 150,042 | 76,429 | 102,775 | 61,026 | 54,319 | 38,801 |
14 | 194,482 | 293,076 | 94,194 | 131,568 | 67,706 | 90,024 | 53,957 | 47,739 | 34,160 |
15 | 176,222 | 274,166 | 84,933 | 123,892 | 61,570 | 85,058 | 49,433 | 45,461 | 31,845 |
16 | 187,593 | 331,113 | 90,597 | 148,132 | 68,613 | 101,035 | 56,023 | 53,349 | 36,743 |
17 | 155,592 | 237,431 | 74,611 | 108,076 | 54,056 | 74,898 | 43,371 | 40,510 | 27,684 |
18 | 172,512 | 267,593 | 83,271 | 121,279 | 60,482 | 83,014 | 48,506 | 43,974 | 30,786 |
19 | 142,771 | 254,075 | 67,813 | 117,069 | 51,542 | 81,348 | 42,076 | 44,002 | 27,689 |
20 | 127,126 | 186,986 | 61,427 | 84,197 | 44,252 | 57,717 | 35,181 | 30,649 | 22,301 |
21 | 86,049 | 140,790 | 41,396 | 63,550 | 31,033 | 43,662 | 25,070 | 22,955 | 16,084 |
22 | 85,052 | 149,962 | 40,808 | 68,111 | 30,586 | 47,028 | 24,982 | 25,065 | 16,427 |
总计 | 5,977,655 | 9,490,075 | 2,891,927 | 4,259,567 | 2,103,627 | 2,915,475 | 1,687,324 | 1,543,349 | 1,074,470 |
表2
Ae值前10的微单倍型位点信息"
MH_ID | bp | Ae | Ho | DP | #SNPs | #Alleles | Position (GRCh37) |
---|---|---|---|---|---|---|---|
mh04zj0146583 | 346 | 66.6163 | 0.9905 | 0.9899 | 41 | 134 | Chr4:30279658~30280003 |
mh01zj0675568 | 248 | 43.2353 | 0.9714 | 0.9905 | 15 | 88 | Chr1:247032193~247032440 |
mh20zj0185187 | 347 | 32.6183 | 0.9999 | 0.9892 | 9 | 68 | Chr20:62308266~62308612 |
mh09zj0366544 | 239 | 28.5622 | 0.9524 | 0.9883 | 12 | 60 | Chr9:129479455~129479693 |
mh07zj0103025 | 323 | 28.3055 | 0.9714 | 0.9892 | 26 | 77 | Chr7:18772264~18772586 |
mh04zj0352614 | 346 | 27.1218 | 0.9810 | 0.9859 | 22 | 105 | Chr4:88537078~88537423 |
mh03zj0068937 | 350 | 24.2308 | 0.8762 | 0.9858 | 20 | 75 | Chr3:11955851~11956200 |
mh02zj0082461 | 320 | 23.7864 | 0.9810 | 0.9874 | 12 | 56 | Chr2:20701112~20701431 |
mh01zj0508420 | 337 | 21.7028 | 0.9619 | 0.9872 | 37 | 63 | Chr1:200785797~200786133 |
mh04zj0474307 | 348 | 20.5307 | 0.9714 | 0.9870 | 11 | 51 | Chr4:129682428~129682775 |
[1] | Kidd KK, Pakstis AJ, Speed WC, Lagace R, Chang J, Wootton S, Ihuegbu N . Microhaplotype loci are a powerful new type of forensic marker. Forensic Sci Int Genet Suppl Ser, 2013,4(1):e123-e124. |
[2] | Oldoni F, Podini D . Forensic molecular biomarkers for mixture analysis. Forensic Sci Int Genet, 2019,41:107-119. |
[3] | Bennett L, Oldoni F, Long K, Cisana S, Madella K, Wootton S, Chang J, Hasegawa R, Lagacé R, Kidd KK, Podini D. Mixture deconvolution by massively parallel sequencing of microhaplotypes. Int J Legal Med, 2019,133(3):719-729. |
[4] | Cheung EYY, Phillips C, Eduardoff M, Lareu MV, Mcnevin D . Performance of ancestry-informative SNP and microhaplotype markers. Forensic Sci Int Genet, 2019,43:102141. |
[5] | Børsting C, Morling N . Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet, 2015,18:78-89. |
[6] | Turchi C, Melchionda F, Pesaresi M, Tagliabracci A . Evaluation of a microhaplotypes panel for forensic genetics using massive parallel sequencing technology. Forensic Sci Int Genet, 2019,41:120-127. |
[7] | Jin XY, Cui W, Chen C, Guo YX, Zhang XR, Xing GH, Lan JW, Zhu BF . Developing and population analysis of a new multiplex panel of 18 microhaplotypes and compound markers using next generation sequencing and its application in the Shaanxi Han population. Electrophoresis, 2020,41(13-14):1230-1237. |
[8] | Cao YY, Wang QY, Zhu Q, Huang YG, Hu YH, Zhou YJ, Wang YF, Zhang J . Preliminary exploration of a novel method for the deconvolution of DNA mixtures by pyrosequencing. Forensic Sci Int Genet Suppl Ser, 2019,7(1):843-845. |
[9] | van der Gaag KJ, de Leeuw RH, Laros J, den Dunnen JT, de Knijff P . Short hypervariable microhaplotypes: A novel set of very short high discriminating power loci without stutter artefacts. Forensic Sci Int Genet, 2018,35:169-175. |
[10] | de la Puente M, Phillips C, Xavier C, Amigo J, Carracedo A, Parson W, Lareu MV . Building a custom large-scale panel of novel microhaplotypes for forensic identification using MiSeq and Ion S5 massively parallel sequencing systems. Forensic Sci Int Genet, 2020,45:102213. |
[11] | Oldoni F, Bader D, Fantinato C, Wootton SC, Lagace R, Kidd KK, Podini D . A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures. Forensic Sci Int Genet, 2020,49:102367. |
[12] | Wu RG, Li HX, Li R, Peng D, Wang NN, Shen XF, Sun HY . Identification and sequencing of 59 highly polymorphic microhaplotypes for analysis of DNA mixtures. Int J Legal Med, 2021,135(4):1137-1149. |
[13] | Qu N, Lin SB, Gao Y, Liang H, Zhao H, Ou XL . A microhap panel for kinship analysis through massively parallel sequencing technology. Electrophoresis, 2020,41(3-4):246-253. |
[14] | Sun SL, Liu Y, Li JN, Yang ZD, Wen D, Liang WB, Yan YQ, Yu H, Cai JF, Zha L . Development and application of a nonbinary SNP-based microhaplotype panel for paternity testing involving close relatives. Forensic Sci Int Genet, 2020,46:102255. |
[15] | Wen D, Sun SL, Liu Y, Li JN, Yang ZD, Kureshi A, Fu Y, Li HN, Jiang BW, Jin C, Cai JF, Zha L . Considering the flanking region variants of nonbinary SNP and phenotype- informative SNP to constitute 30 microhaplotype loci for increasing the discriminative ability of forensic applications. Electrophoresis, 2021,42(9-10):1115-1126. |
[16] | Chen P, Deng CW, Li Z, Pu Y, Yang JW, Yu YF, Li K, Li D, Liang WB, Zhang L, Chen F . A microhaplotypes panel for massively parallel sequencing analysis of DNA mixtures. Forensic Sci Int Genet, 2019,40:140-149. |
[17] | Voskoboinik L, Motro U, Darvasi A . Facilitating complex DNA mixture interpretation by sequencing highly polymorphic haplotypes. Forensic Sci Int Genet, 2018,35:136-140. |
[18] | Kidd KK, Speed WC, Pakstis AJ, Podini DS, Lagace R, Chang J, Wootton S, Haigh E, Soundararajan U . Evaluating 130 microhaplotypes across a global set of 83 populations. Forensic Sci Int Genet, 2017,29:29-37. |
[19] | Chen P, Yin CY, Li Z, Pu Y, Yu YJ, Zhao P, Chen DX, Liang WB, Zhang L, Chen F . Evaluation of the microhaplotypes panel for DNA mixture analyses. Forensic Sci Int Genet, 2018,35:149-155. |
[20] | Kureshi A, Li J, Wen D, Sun SL, Yang ZD, Zha L . Construction and forensic application of 20 highly polymorphic microhaplotypes. R Soc Open Sci, 2020,7(5):191937. |
[21] | 1000 Genomes Project Consortium; Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, Mccarthy S, Mcvean GA, Abecasis GR. A global reference for human genetic variation. Nature, 2015,526(7571):68-74. |
[22] | Kidd KK, Speed WC . Criteria for selecting microhaplotypes: mixture detection and deconvolution. Investig Genet, 2015,6(1):1. |
[23] | Logsdon GA, Vollger MR, Hsieh P, Mao YF, Liskovykh MA, Koren S, Nurk S, Mercuri L, Dishuck PC, Rhie A, de Lima LG, Dvorkina T, Porubsky D, Harvey WT, Mikheenko A, Bzikadze AV, Kremitzki M, Graves-Lindsay TA, Jain C, Hoekzema K, Murali SC, Munson KM, Baker C, Sorensen M, Lewis AM, Surti U, Gerton JL, Larionov V, Ventura M, Miga KH, Phillippy AM, Eichler EE. The structure, function and evolution of a complete human chromosome 8. Nature, 2021,593(7857):101-107. |
[24] | Collins JR, Stephens RM, Gold B, Long B, Dean M, Burt SK . An exhaustive DNA micro-satellite map of the human genome using high performance computing. Genomics, 2003,82(1):10-19. |
[25] | Oldoni F, Kidd KK, Podini D . Microhaplotypes in forensic genetics. Forensic Sci Int Genet, 2019,38:54-69. |
[1] | 孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043. |
[2] | 郭晓媛, 孙昌春, 薛思瑶, 赵慧, 江丽, 李彩霞. 49AISNP:东亚北方三个族群遗传来源推断[J]. 遗传, 2021, 43(9): 880-889. |
[3] | 刘志勇, 乌日嘎, 李燃, 王蔷薇, 孙宏钰. 法医遗传学研究和鉴定中的伦理问题[J]. 遗传, 2021, 43(10): 994-1002. |
[4] | 刘杨, 孙昌春, 马咪, 王玲, 赵雯婷, 马泉, 季安全, 刘京, 李彩霞. 74-plex SNPs复合检测体系在中国人群中的族群推断研究[J]. 遗传, 2020, 42(3): 296-308. |
[5] | 江丽,孙启凡,马泉,赵雯婷,刘京,赵蕾,季安全,李彩霞. 27-plex SNP种族推断方法的优化及验证[J]. 遗传, 2017, 39(2): 166-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: