遗传 ›› 2024, Vol. 46 ›› Issue (4): 266-278.doi: 10.16288/j.yczz.23-322
• 特邀综述 • 下一篇
田文1,2(), 谌婷1,2(), 刘清艳1,2, 张博森1, 郭惠珊1,2(), 赵建华1,2()
收稿日期:
2023-12-29
修回日期:
2024-03-13
出版日期:
2024-04-20
发布日期:
2024-03-22
通讯作者:
郭惠珊,赵建华
E-mail:tianwen9797@163.com;chent202202@163.com;guohs@im.ac.cn;zhaojh@im.ac.cn
作者简介:
田文,博士研究生,专业方向:遗传学。E-mail: tianwen9797@163.com;基金资助:
Wen Tian1,2(), Ting Chen1,2(), Qingyan Liu1,2, Bosen Zhang1, Huishan Guo1,2(), Jianhua Zhao1,2()
Received:
2023-12-29
Revised:
2024-03-13
Published:
2024-04-20
Online:
2024-03-22
Contact:
Huishan Guo, Jianhua Zhao
E-mail:tianwen9797@163.com;chent202202@163.com;guohs@im.ac.cn;zhaojh@im.ac.cn
Supported by:
摘要:
RNA沉默是真核生物基因表达调控的保守机制,在植物生长发育以及响应生物和非生物胁迫过程中发挥着非常重要的作用。跨界RNA沉默与种间RNA沉默为开发基于RNA沉默的作物病害防控体系提供了理论基础。本文概括了植物RNA沉默保守途径,归纳了RNA沉默在植物-病原互作研究中的代表性研究,阐述了基于RNA沉默开发的宿主诱导基因沉默、喷施诱导基因沉默和微生物诱导基因沉默技术的原理,以及应用研究现状,以期为开发基于RNA沉默的新型作物病害防控技术提供参考。
田文, 谌婷, 刘清艳, 张博森, 郭惠珊, 赵建华. 植物RNA沉默抗病机制与应用研究进展[J]. 遗传, 2024, 46(4): 266-278.
Wen Tian, Ting Chen, Qingyan Liu, Bosen Zhang, Huishan Guo, Jianhua Zhao. Advances in the mechanisms and applications of RNA silencing in crop protection[J]. Hereditas(Beijing), 2024, 46(4): 266-278.
表1
HIGS和SIGS技术植物抗病应用"
抗病技术 | 寄主植物 | 病原微生物 | 靶标基因 | 参考文献 |
---|---|---|---|---|
HIGS | 大麦 | 白粉病菌Blumeria graminis | Avra10 | [ |
禾谷镰刀菌Fusarium graminearum | Chs3b, CYP51A, CYP51B, CYP51C | [ | ||
黄色镰刀菌Fusarium culmorum | FcFgl1, FcGls1, FcFmk1, FcGls1 | [ | ||
小麦 | 条锈病菌Puccinia striiformis f. sp. tritici | PsFUZ7, PsCPK1 | [ | |
棉花 | 大丽轮枝菌Verticillium dahliae | VdH1, VdILV2, VdILV6 | [ | |
油菜 | 核盘菌Sclerotinia sclerotiorum | PG, CBH, OAH1 | [ | |
水稻 | 稻瘟病菌Magnaporthe oryzae | Mo ABC1, Mo MAC1, Mo PMK1, RHO1, MoAP1 | [ | |
玉米 | 拟轮枝镰孢菌Fusarium verticillioides | Deo, Atg15, Frp1 | [ | |
黄曲霉Aspergillus flavus | Pc2, aflR, amy1 | [ | ||
马铃薯 | 疫霉Phytophthora infestans | PiGPB1 | [ | |
SIGS | 大麦 | 禾谷镰刀菌Fusarium graminearum | DIC1, TRI15, CYP51A, CYP51B, CYP51C | [ |
核盘菌Sclerotinia sclerotiorum | β2Tub | [ | ||
油菜 | 灰霉病菌Botrytis cinerea | Bctim44, Bctrr1 | [ | |
核盘菌Sclerotinia sclerotiorum | SS1G_01703, SS1G_02495, SS1G_09897, SS1G_07873 | |||
莴苣 | 灰霉病菌Botrytis cinerea | VPS51, SAC1, DCTN1, DCL1/DCL2 | [ | |
番茄 | 黑曲霉Aspergillusniger | PS51, SAC1, DCTN1, FOW2, ChsV | [ | |
水稻 | 稻瘟病菌Magnaporthe oryzae | AP1, SSADH, MAC1, PMK1 | [ | |
拟南芥 | 禾谷镰刀菌 Fusarium graminearum | CYP51A, CYP51B, CYP5C | [ |
[1] |
Zhao JH, Guo HS. RNA silencing: from discovery and elucidation to application and perspectives. J Integr Plant Biol, 2022, 64(2): 476-498.
doi: 10.1111/jipb.13213 |
[2] |
Song XW, Li Y, Cao XF, Qi YJ. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70(1): 489-525.
doi: 10.1146/arplant.2019.70.issue-1 |
[3] |
Yu Y, Jia TR, Chen XM. The 'how' and 'where' of plant microRNAs. New Phytol, 2017, 216(4): 1002-1017.
doi: 10.1111/nph.14834 pmid: 29048752 |
[4] |
Liu YL, Teng C, Xia R, Meyers BC. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell, 2020, 32(10): 3059-3080.
doi: 10.1105/tpc.20.00335 |
[5] |
Fei QL, Xia R, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell, 2013, 25(7): 2400-2415.
doi: 10.1105/tpc.113.114652 |
[6] |
Allen E, Xie ZX, Gustafson AM, Carrington JC. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2): 207-221.
doi: 10.1016/j.cell.2005.04.004 pmid: 15851028 |
[7] |
Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123(7): 1279-1291.
doi: 10.1016/j.cell.2005.11.035 pmid: 16377568 |
[8] |
Wang XJ, Gaasterland T, Chua NH. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol, 2005, 6(4): R30.
doi: 10.1186/gb-2005-6-4-r30 |
[9] |
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11(3): 204-220.
doi: 10.1038/nrg2719 pmid: 20142834 |
[10] |
Sigman MJ, Panda K, Kirchner R, McLain LL, Payne H, Peasari JR, Husbands AY, Slotkin RK, McCue AD. An siRNA-guided ARGONAUTE protein directs RNA polymerase V to initiate DNA methylation. Nat Plants, 2021, 7(11): 1461-1474.
doi: 10.1038/s41477-021-01008-7 pmid: 34750500 |
[11] |
Chang YN, Zhu C, Jiang J, Zhang HM, Zhu JK, Duan CG. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol, 2020, 62(5): 563-580.
doi: 10.1111/jipb.12901 |
[12] |
Xie ZH. The roles of RNA silencing in plant biotic stress. Hereditas (Beijing), 2010, 32(6): 561-570.
doi: 10.3724/SP.J.1005.2010.00561 |
谢兆辉. RNA沉默在植物生物逆境反应中的作用. 遗传, 2010, 32(6): 561-570. | |
[13] |
Zhu J, Yu C, Zhu YL. RNA silencing and its application in plant. Hereditas (Beijing), 2007, 29(1): 22-28.
doi: 10.1360/yc-007-0022 |
朱剑, 余潮, 朱友林. RNA沉默技术及其在植物中的应用. 遗传, 2007, 29(1): 22-28. | |
[14] |
Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 1986, 232(4751): 738-743.
doi: 10.1126/science.3457472 pmid: 3457472 |
[15] |
Sanford JC, Johnston SA. The concept of parasite-derived resistance—deriving resistance genes from the parasite's own genome. J Theor Biol, 1985, 113(2): 395-405.
doi: 10.1016/S0022-5193(85)80234-4 |
[16] |
Powell PA, Stark DM, Sanders PR, Beachy RN. Protection against tobacco mosaic virus in transgenic plants that express tobacco mosaic virus antisense RNA. Proc Natl Acad Sci USA, 1989, 86(18): 6949-6952.
doi: 10.1073/pnas.86.18.6949 pmid: 2476807 |
[17] |
Hemenway C, Fang RX, Kaniewski WK, Chua NH, Tumer NE. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J, 1988, 7(5): 1273-1280.
doi: 10.1002/j.1460-2075.1988.tb02941.x pmid: 16453840 |
[18] | Cuozzo M, Oconnell KM, Kaniewski W, Fang RX, Chua NH, Tumer NE. Viral protection in transgenic tobacco plants expressing the cucumber mosaic-virus coat protein or its antisense RNA. Bio-Technology, 1988, 6(5): 549-557. |
[19] |
Guo HS, Garcia JA. Delayed resistance to plum pox potyvirus mediated by a mutated RNA replicase gene: involvement of a gene-silencing mechanism. Mol Plant Microbe In, 1997, 10(2): 160-170.
doi: 10.1094/MPMI.1997.10.2.160 |
[20] |
Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130(3): 413-426.
doi: 10.1016/j.cell.2007.07.039 |
[21] |
Wu JG, Yang RX, Yang ZR, Yao SZ, Zhao SS, Wang Y, Li PC, Song XW, Jin L, Zhou T, Lan Y, Xie LH, Zhou XP, Chu CC, Qi YJ, Cao XF, Li Y. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants, 2017, 3: 16203.
doi: 10.1038/nplants.2016.203 pmid: 28059073 |
[22] |
Wu JG, Yang ZR, Wang Y, Zheng LJ, Ye RQ, Ji YH, Zhao SS, Ji SY, Liu RF, Xu L, Zheng H, Zhou YJ, Zhang X, Cao XF, Xie LH, Wu ZJ, Qi YJ, Li Y. Viral-inducible Argonaute 18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife, 2015, 4: e05733.
doi: 10.7554/eLife.05733 |
[23] |
Cui C, Wang JJ, Zhao JH, Fang YY, He XF, Guo HS, Duan CG. A Brassica miRNA regulates plant growth and immunity through distinct modes of action. Mol Plant, 2020, 13(2): 231-245.
doi: 10.1016/j.molp.2019.11.010 |
[24] |
He XF, Fang YY, Feng L, Guo HS. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett, 2008, 582(16): 2445-2452.
doi: 10.1016/j.febslet.2008.06.011 |
[25] |
Csorba T, Kontra L, Burgyán J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology, 2015, 479-480: 85-103.
doi: 10.1016/j.virol.2015.02.028 pmid: 25766638 |
[26] |
Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, Zhu H, Ding SW, Guo HS. Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the cucumber mosaic virus 2b protein. Plant Cell, 2012, 24(1): 259-274.
doi: 10.1105/tpc.111.092718 |
[27] | Fang YY, Zhao JH, Liu SW, Wang S, Duan CG, Guo HS.CMV2b-AGO interaction is required for the suppression of RDR-dependent antiviral silencing in Arabidopsis. Front Microbiol, 2016, 7: 1329. |
[28] |
Zhao JH, Hua CL, Fang YY, Guo HS. The dual edge of RNA silencing suppressors in the virus-host interactions. Curr Opin Virol, 2016, 17: 39-44.
doi: 10.1016/j.coviro.2015.12.002 |
[29] |
Zhao JH, Liu XL, Fang YY, Fang RX, Guo HS. CMV2b-dependent regulation of host defense pathways in the context of viral infection. Viruses, 2018, 10(11): 618.
doi: 10.3390/v10110618 |
[30] |
Zahid K, Zhao JH, Smith NA, Schumann U, Fang YY, Dennis ES, Zhang R, Guo HS, Wang MB. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA. PLoS Genet, 2015, 11(1): e1004906.
doi: 10.1371/journal.pgen.1004906 |
[31] |
Chen ZQ, Zhao JH, Chen Q, Zhang ZH, Li J, Guo ZX, Xie Q, Ding SW, Guo HS. DNA geminivirus infection induces an imprinted E3 ligase gene to epigenetically activate viral gene transcription. Plant Cell, 2020, 32(10): 3256-3272.
doi: 10.1105/tpc.20.00249 |
[32] |
Wang Y, Pruitt RN, Nurnberger T, Wang YC. Evasion of plant immunity by microbial pathogens. Nat Rev Microbiol, 2022, 20(8): 449-464.
doi: 10.1038/s41579-022-00710-3 pmid: 35296800 |
[33] |
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312(5772): 436-439.
doi: 10.1126/science.1126088 pmid: 16627744 |
[34] |
Huang CY, Wang H, Hu P, Hamby R, Jin HL. Small RNAs-big players in plant-microbe interactions. Cell Host Microbe, 2019, 26(2): 173-182.
doi: 10.1016/j.chom.2019.07.021 |
[35] |
Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Jr., Zhu JK, Staskawicz BJ, Jin H. A pathogen- inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA, 2006, 103(47): 18002-18007.
doi: 10.1073/pnas.0608258103 pmid: 17071740 |
[36] |
Boccara M, Sarazin A, Thiébeauld O, Jay F, Voinnet O, Navarro L, Colot V. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector- triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog, 2014, 10(1): e1003883.
doi: 10.1371/journal.ppat.1003883 |
[37] |
Li Y, Zhao SL, Li JL, Hu XH, Wang H, Cao XL, Xu YJ, Zhao ZX, Xiao ZY, Yang N, Fan J, Huang F, Wang WM.Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Front Plant Sci, 2017, 8: 2.
doi: 10.3389/fpls.2017.00002 pmid: 28144248 |
[38] |
Wang ZY, Xia YQ, Lin SY, Wang YR, Guo BH, Song XN, Ding SC, Zheng LY, Feng RY, Chen SL, Bao YL, Sheng C, Zhang X, Wu JG, Niu DD, Jin HL, Zhao HW.Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant J, 2018, 95(4): 584-597.
doi: 10.1111/tpj.2018.95.issue-4 |
[39] |
Hua CL, Zhao JH, Guo HS. Trans-kingdom RNA silencing in plant-fungal pathogen interactions. Mol Plant, 2018, 11(2): 235-244.
doi: S1674-2052(17)30370-2 pmid: 29229568 |
[40] |
Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants, 2016, 2(10): 16153.
doi: 10.1038/nplants.2016.153 pmid: 27668926 |
[41] |
Cai Q, Qiao LL, Wang M, He BY, Lin FM, Palmquist J, Huang SD, Jin HL. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science, 2018, 360(6393): 1126-1129.
doi: 10.1126/science.aar4142 pmid: 29773668 |
[42] |
Weiberg A, Wang M, Lin FM, Zhao HW, Zhang ZH, Kaloshian I, Huang HD, Jin HL. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 2013, 342(6154): 118-123.
doi: 10.1126/science.1239705 pmid: 24092744 |
[43] |
Zhang BS, Li YC, Guo HS, Zhao JH. Verticillium dahliae secretes small RNA to target host MIR157d and retard plant floral transition during infection. Front Plant Sci, 2022, 13: 847086.
doi: 10.3389/fpls.2022.847086 |
[44] |
Qiao YL, Liu L, Xiong Q, Flores C, Wong J, Shi JX, Wang XB, Liu XG, Xiang QJ, Jiang SS, Zhang FC, Wang YC, Judelson HS, Chen XM, Ma WB. Oomycete pathogens encode RNA silencing suppressors. Nat Genet, 2013, 45(3): 330-333.
doi: 10.1038/ng.2525 |
[45] |
Qiao YL, Shi JX, Zhai Y, Hou YN, Ma WB. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proc Natl Acad Sci USA, 2015, 112(18): 5850-5855.
doi: 10.1073/pnas.1421475112 pmid: 25902521 |
[46] |
Zhang P, Jia YJ, Shi JX, Chen C, Ye WW, Wang YC, Ma WB, Qiao YL. The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. New Phytol, 2019, 223(2): 839-852.
doi: 10.1111/nph.15836 pmid: 30963588 |
[47] |
Hou YN, Zhai Y, Feng L, Karimi HZ, Rutter BD, Zeng LP, Choi DS, Zhang BL, Gu WF, Chen XM, Ye WW, Innes RW, Zhai JX, Ma WB. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe, 2019, 25(1): 153-165.e5.
doi: 10.1016/j.chom.2018.11.007 |
[48] |
Yin CT, Ramachandran SR, Zhai Y, Bu CY, Pappu HR, Hulbert SH. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses. New Phytol, 2019, 222(3): 1561-1572.
doi: 10.1111/nph.2019.222.issue-3 |
[49] | Zhu C, Liu JH, Zhao JH, Liu T, Chen YY, Wang CH, Zhang ZH, Guo HS, Duan CG. A fungal effector suppresses the nuclear export of AGO1-miRNA complex to promote infection in plants. Proc Natl Acad Sci USA, 2022, 119(12): e2114583119. |
[50] | Xiao Y, Wang JY, Li L, Wang YL, Zhang CQ, Sun GC. Advances in the researches and applications of host-induced gene silencing technology. J Plant Prot, 2020, 47(1): 11-17. |
肖瑶, 王教瑜, 李玲, 王艳丽, 张传清, 孙国昌. 寄主诱导的基因沉默技术研究和应用进展. 植物保护学报, 2020, 47(1): 11-17. | |
[51] | Feng DD, Deng L, Wang ZP, Pan H, Li WY, Zhong CH, Li L. Research progress on host-induced gene silencing to promote plant resistance against fungal disease. Plant Sci J, 2021, 39(3): 316-323. |
冯丹丹, 邓蕾, 汪祖鹏, 潘慧, 李文艺, 钟彩虹, 李黎. 寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展. 植物科学学报, 2021, 39(3): 316-323. | |
[52] |
Qu J, Ye J, Fang RX. Artificial microRNA-mediated virus resistance in plants. J Virol, 2007, 81(12): 6690-6699.
pmid: 17344304 |
[53] |
Duan CG, Wang CH, Fang RX, Guo HS. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol, 2008, 82(22): 11084-11095.
doi: 10.1128/JVI.01377-08 |
[54] |
Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 2010, 22(9): 3130-3141.
doi: 10.1105/tpc.110.077040 |
[55] |
Cheng W, Song XS, Li HP, Cao LH, Sun K, Qiu XL, Xu YB, Yang P, Huang T, Zhang JB, Qu B, Liao YC. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol J, 2015, 13(9): 1335-1345.
doi: 10.1111/pbi.12352 pmid: 25735638 |
[56] |
Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH. Host-induced gene silencing of cytochrome P450 lanosterol C14alpha-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci USA, 2013, 110(48): 19324-19329.
doi: 10.1073/pnas.1306373110 |
[57] |
Chen WX, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao YS, Deising HB, Kumlehn J, Schweizer P. Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot, 2016, 67(17): 4979-4991.
doi: 10.1093/jxb/erw263 |
[58] |
Qi T, Zhu XG, Tan CL, Liu P, Guo J, Kang ZS, Guo J.Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnol J, 2018, 16(3): 797-807.
doi: 10.1111/pbi.2018.16.issue-3 |
[59] |
Panwar V, Jordan M, McCallum B, Bakkeren G. Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnol J, 2018, 16(5): 1013-1023.
doi: 10.1111/pbi.12845 pmid: 28941315 |
[60] |
Jahan SN, Åsman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J Exp Bot, 2015, 66(9): 2785-2794.
doi: 10.1093/jxb/erv094 |
[61] |
Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ, Fang YY, Guo HS. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol Plant, 2016, 9(6): 939-942.
doi: 10.1016/j.molp.2016.02.008 pmid: 26925819 |
[62] |
Xu J, Wang XY, Li YQ, Zeng JG, Wang GL, Deng CY, Guo WZ. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnol J, 2018, 16(9): 1629-1643.
doi: 10.1111/pbi.2018.16.issue-9 |
[63] |
Wei CY, Qin TF, Li YQ, Wang WP, Dong T, Wang QL. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochem Biophys Res Commun, 2020, 524(2): 392-397.
doi: 10.1016/j.bbrc.2020.01.126 |
[64] |
Zhang T, Zhao JH, Fang YY, Guo HS, Jin Y. Exploring the effectiveness and durability of trans-kingdom silencing of fungal genes in the vascular pathogen Verticillium dahliae. Int J Mol Sci, 2022, 23(5): 2742.
doi: 10.3390/ijms23052742 |
[65] |
Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R, Surana P, Whigham E, Nettleton D, Bogdanove AJ, Wise RP, Schweizer P, Bindschedler LV, Spanu PD. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant Microbe Interact, 2013, 26(6): 633-642.
doi: 10.1094/MPMI-01-13-0005-R |
[66] |
Zhu XG, Qi T, Yang Q, He FX, Tan CL, Ma W, Voegele RT, Kang ZS, Guo J. Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol, 2017, 175(4): 1853-1863.
doi: 10.1104/pp.17.01223 |
[67] |
Wang AR, Zhang CH, Zhang LL, Lin WW, Lin DS, Lu GD, Zhou J, Wang ZH. Identification of Arabidopsis mutants with enhanced resistance to Sclerotinia stem rot disease from an activation-tagged library. J Phytopathol, 2009, 157(1): 63-69.
doi: 10.1111/jph.2008.157.issue-1 |
[68] |
Zhu L, Zhu J, Liu ZX, Wang ZY, Zhou C, Wang H. Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes (Basel), 2017, 8(10): 241.
doi: 10.3390/genes8100241 |
[69] |
Guo XY, Li Y, Fan J, Xiong H, Xu FX, Shi J, Shi Y, Zhao JQ, Wang YF, Cao XL, Wang WM. Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae. Front Plant Sci, 2019, 10: 433.
doi: 10.3389/fpls.2019.00433 |
[70] |
Qiao LL, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao HW, Glass NL, Judelson HS, Mezzetti B, Niu DD, Jin HL. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J, 2021, 19(9): 1756-1768.
doi: 10.1111/pbi.v19.9 |
[71] |
Raruang Y, Omolehin O, Hu DF, Wei QJ, Promyou S, Parekattil LJ, Rajasekaran K, Cary JW, Wang K, Chen ZY.Targeting the Aspergillus flavus p2c gene through host-induced gene silencing reduces A. flavus infection and aflatoxin contamination in transgenic maize. Front Plant Sci, 2023, 14: 1150086.
doi: 10.3389/fpls.2023.1150086 |
[72] |
Masanga JO, Matheka JM, Omer RA, Ommeh SC, Monda EO, Alakonya AE. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Plant Cell Rep, 2015, 34(8): 1379-1387.
doi: 10.1007/s00299-015-1794-9 pmid: 25895735 |
[73] |
Gilbert MK, Majumdar R, Rajasekaran K, Chen ZY, Wei QJ, Sickler CM, Lebar MD, Cary JW, Frame BR, Wang K. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta, 2018, 247(6): 1465-1473.
doi: 10.1007/s00425-018-2875-0 |
[74] |
Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, McMillan J, Mentzel T, Kogel KH. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog, 2016, 12(10): e1005901.
doi: 10.1371/journal.ppat.1005901 |
[75] |
Tretiakova P, Voegele RT, Soloviev A, Link TI. Successful silencing of the mycotoxin synthesis gene TRI5 in Fusarium culmorum and observation of reduced virulence in VIGS and SIGS experiments. Genes (Basel), 2022, 13(3): 395.
doi: 10.3390/genes13030395 |
[76] |
Cagliari D, Dias NP, Galdeano DM, Dos Santos EÁ, Smagghe G, Zotti MJ. Management of pest insects and plant diseases by non-transformative RNAi. Front Plant Sci, 2019, 10: 1319.
doi: 10.3389/fpls.2019.01319 pmid: 31708946 |
[77] |
McLoughlin AG, Wytinck N, Walker PL, Girard IJ, Rashid KY, de Kievit T, Fernando WGD, Whyard S, Belmonte MF. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep, 2018, 8(1): 7320.
doi: 10.1038/s41598-018-25434-4 pmid: 29743510 |
[78] | Mosa MA, Youssef K. Topical delivery of host induced RNAi silencing by layered double hydroxide nanosheets: an efficient tool to decipher pathogenicity gene function of Fusarium crown and root rot in tomato. Physiol Mol Plant P, 2021, 115. |
[79] |
Ray P, Sahu D, Aminedi R, Chandran D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. Front Fungal Biol, 2022, 3: 977502.
doi: 10.3389/ffunb.2022.977502 |
[80] |
Ghosh S, Patra S, Ray S. A combinatorial nanobased spray-induced gene silencing technique for crop protection and improvement. ACS Omega, 2023, 8(25): 22345-22351.
doi: 10.1021/acsomega.3c01968 pmid: 37396279 |
[81] |
Zhao JH, Zhang T, Liu QY, Guo HS. Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives. Plant Commun, 2021, 2(2): 100167.
doi: 10.1016/j.xplc.2021.100167 |
[82] |
Gan DF, Zhang J, Jiang HB, Jiang T, Zhu SW, Cheng BJ. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep, 2010, 29(11): 1261-1268.
doi: 10.1007/s00299-010-0911-z pmid: 20734050 |
[83] |
Tenllado F, Martínez-García B, Vargas M, Díaz-Ruíz JR. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol, 2003, 3: 3.
pmid: 12659646 |
[84] |
Yin GH, Sun ZN, Song YZ, An HL, Zhu CX, Wen FJ. Bacterially expressed double-stranded RNAs against hot-spot sequences of tobacco mosaic virus or potato virus Y genome have different ability to protect tobacco from viral infection. Appl Biochem Biotechnol, 2010, 162(7): 1901-1914.
doi: 10.1007/s12010-010-8968-2 |
[85] | Wang CY, Yang J, Qin JC, Yang YW. Eco-friendly nanoplatforms for crop quality control, protection, and nutrition. Adv Sci (Weinh), 2021, 8(9): 2004525. |
[86] |
Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQM, Xu ZP. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants, 2017, 3: 16207.
doi: 10.1038/nplants.2016.207 pmid: 28067898 |
[87] |
Zhang X, Zhang J, Zhu KY. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol, 2010, 19(5): 683-693.
doi: 10.1111/j.1365-2583.2010.01029.x pmid: 20629775 |
[88] |
Ramesh Kumar D, Saravana Kumar P, Gandhi MR, Al-Dhabi NA, Paulraj MG, Ignacimuthu S. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int J Biol Macromol, 2016, 86: 89-95.
doi: 10.1016/j.ijbiomac.2016.01.030 pmid: 26794313 |
[89] | Gurusamy D, Mogilicherla K, Palli SR. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem Physiol, 2020, 104(4): e21677. |
[90] |
Qiao LL, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin HL. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. Plant Biotechnol J, 2023, 21(4): 854-865.
doi: 10.1111/pbi.14001 pmid: 36601704 |
[91] | Chen XJ, Shi T, Chen C, Tang T. Advances in the control of plant diseases via spray-induced gene silencing. Plant Prot, 2022, 48(5): 15-22. |
陈夕军, 石童, 陈宸, 唐滔. 喷施诱导的基因沉默(SIGS)技术控制植物病害研究进展. 植物保护, 2022, 48(5): 15-22. | |
[92] | Guan M, Chao ZJ, Yan S, Shen J. Research status and development prospect of RNA pesticide. Mod Agrochem, 2023, 22(2): 11-18. |
关梅, 晁子健, 闫硕, 沈杰. RNA农药的研究现状和发展前景. 现代农药, 2023, 22(2): 11-18. | |
[93] |
Zhao JH, Guo HS. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Curr Opin Genet Dev, 2019, 58-59: 62-69.
doi: 10.1016/j.gde.2019.07.019 |
[94] |
Wen HG, Zhao JH, Zhang BS, Gao F, Wu XM, Yan YS, Zhang J, Guo HS. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. Nat Plants, 2023, 9(9): 1409-1418.
doi: 10.1038/s41477-023-01507-9 |
[95] |
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol, 2023, 21(5): 312-326.
doi: 10.1038/s41579-022-00819-5 |
[96] |
Fang RX. Microbe-induced gene silencing explores interspecies RNAi and opens up possibilities of crop protection. Sci China Life Sci, 2023, 67(3): 626-628.
doi: 10.1007/s11427-023-2477-9 |
[97] |
Cui CL, Wang Y, Li YF, Sun PL, Jiang JY, Zhou HN, Liu JN, Wang SB. Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy. Cell Rep, 2022, 41(4): 111527.
doi: 10.1016/j.celrep.2022.111527 |
[98] |
Elston KM, Maeda GP, Perreau J, Barrick JE. Addressing the challenges of symbiont-mediated RNAi in aphids. PeerJ, 2023, 11: e14961.
doi: 10.7717/peerj.14961 |
[99] |
Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1767): 20180309.
doi: 10.1098/rstb.2018.0309 |
[1] | 谢兆辉. RNA沉默在植物生物逆境反应中的作用[J]. 遗传, 2010, 32(6): 561-570. |
[2] | 朱剑,余潮,朱友林. RNA沉默技术及其在植物中的应用[J]. 遗传, 2007, 29(1): 22-22―28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: