遗传 ›› 2010, Vol. 32 ›› Issue (6): 561-570.doi: 10.3724/SP.J.1005.2010.00561
谢兆辉
收稿日期:
2009-09-25
修回日期:
2009-12-08
出版日期:
2010-06-20
发布日期:
2010-05-24
通讯作者:
谢兆辉
E-mail:xiezhh6823@163.com
基金资助:
山东省自然科学基金(编号:Y2008D3)
xie zhaohui
Received:
2009-09-25
Revised:
2009-12-08
Online:
2010-06-20
Published:
2010-05-24
Contact:
xie zhaohui
E-mail:xiezhh6823@163.com
摘要:
RNA沉默是真核生物共有的基因表达调节机制和防御机制。在植物RNA沉默中, 一些小RNAs, 如微小 RNAs和小干扰RNAs, 在植物防御病毒、细菌或食草动物的反应中具有重要作用。为了抑制宿主的RNA沉默系统, 植物病毒或细菌进化出了在RNA沉默不同阶段起作用的病毒沉默抑制子或细菌沉默抑制子, 来克服寄主的RNA沉默反应。文章就植物RNA沉默、病毒沉默抑制子、细菌沉默抑制子及其相关防御反应的一些新进展做一概述。
谢兆辉. RNA沉默在植物生物逆境反应中的作用[J]. 遗传, 2010, 32(6): 561-570.
XIE Zhao-Hui. The roles of RNA silencing in plant biotic stress[J]. HEREDITAS, 2010, 32(6): 561-570.
[1] Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. Hierarchical action and inhibi-tion of plant Dicer-like proteins in antiviral defense. Science, 2006, 313(5783): 68–71. [2] Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130(3): 413–426. [3] Moissiard G, Voinnet O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci USA, 2006, 103(51): 19593–19598. [4] Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu JK, Staskawicz BJ, Jin HL. A patho-gen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA, 2006, 103(47): 18002–18007. [5] Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 2007, 21(23): 3123–3134. [6] Qu F, Ye X, Morris TJ. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci USA, 2008, 105(38): 14732–14737. [7] Mlotshwa S, Pruss GJ, Peragine A, Endres MW, Li J, Chen X, Poethig RS, Bowman LH, Vance V. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One, 2008, 3(3): e1755. [8] Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK. En-dogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabi-dopsis. Cell, 2005, 123(7): 1279–1291. [9] Raja P, Sanville BC, Buchmann RC, Bisaro DM. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol, 2008, 82(18): 8997–9007. [10] Aliyari R, Ding SW. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev, 2009, 227(1): 176–188. [11] Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104(37): 14741–14746. [12] Diaz-Pendon JA, Li F, Li WX, Ding SW. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accu-mulation of three classes of viral small interfering RNAs. Plant Cell, 2007, 19(6): 2053–2063. [13] Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM. Four plant Dicers me-diate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res, 2006, 34(21): 6233–6246. [14] Chen X. A silencing safeguard: links between RNA si-lencing and mRNA processing in Arabidopsis. Dev Cell, 2008, 14(6): 854–866. [15] Pandey SP, Baldwin IT. RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature. Plant J, 2007, 50(1): 40–53. [16] Pandey SP, Shahi P, Gase K, Baldwin IT. Herbi-vory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci USA, 2008, 105(12): 4559–4564. [17] Curaba J, Chen X. Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem, 2008, 283(6): 3059–3066. [18] Gómez G, Martínez G, Pallás V. Interplay between vi-roid-induced pathogenesis and RNA silencing pathways. Trends Plant Sci, 2009, 14(5): 264–269. [19] Pandey SP, Baldwin IT. Silencing RNA-directed RNA po-lymerase 2 increases the susceptibility of Nicotiana at-tenuata to UV in the field and in the glasshouse. Plant J, 2008, 54(5): 845–862. [20] Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol, 2007, 17(18): 1609–1614. [21] Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev, 2006, 20(23): 3255–3268. [22] Agorio A, Vera P. ARGONAUTE4 is required for resis-tance to Pseudomonas syringae in Arabidopsis. Plant Cell, 2007, 19(11): 3778–3790. [23] Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev, 2007, 21(7): 750–755. [24] Obbard DJ, Gordon KH, Buck AH, Jiggins FM. The evo-lution of RNAi as a defence against viruses and transpos-able elements. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1513): 99–115. [25] Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci, 2008, 13(7): 317–328. [26] Zubko E, Meyer P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J, 2007, 52(6): 1131–1139. [27] Vaistij FE, Jones L. Compromised virus-induced gene si-lencing in RDR6-deficient plants. Plant Physiol, 2009, 149(3): 1399–1407. [28] Dunoyer P, Voinnet O. Mixing and matching: the essence of plant systemic silencing? Trends Genet, 2008, 24(4): 151–154. [29] Kalantidis K, Schumacher HT, Alexiadis T, Helm JM. RNA silencing movement in plants. Biol Cell, 2008, 100(1): 13–26. [30] Price DR, Gatehouse JA. RNAi-mediated crop protection against insects. Trends Biotechnol, 2008, 26(7): 393–400. [31] Noreen F, Akbergenov R, Hohn T, Richert-Pöggeler KR. Distinct expression of endogenous Petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hy-brida lines is correlated with differences in histone modi-fication and siRNA production. Plant J, 2007, 50(2): 219–229. [32] Rodríguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcrip-tional gene silencing in host recovery. J Virol, 2009, 83(3): 1332–1340. [33] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297. [34] Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008, 14(5): 814–821. [35] Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y. Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res, 2007, 14(5): 227–233. [36] Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J, 2008, 55(1): 131–151. [37] He XF, Fang YY, Feng L, Guo HS. Characterization of conserved and novel microRNAs and their targets, in-cluding a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett, 2008, 582(16): 2445–2452. [38] Lu YD, Gan QH, Chi XY, Qin S. Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep, 2008, 27(10): 1571–1579. [39] Padmanabhan MS, Kramer SR, Wang X, Culver JN. To-bacco mosaic virus replicase-auxin/indole acetic acid pro-tein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol, 2008, 82(5): 2477–2485. [40] Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. A plant miRNA contrib-utes to antibacterial resistance by repressing auxin signal-ing. Science, 2006, 12(5772): 436–439. [41] Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2007, 2(2): e219. [42] Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 2009, 229(4): 1009–1014. [43] Fattash I, Voss B, Reski R, Hess WR, Frank W. Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol, 2007, 7: 13. [44] Navarro L, Jay F, Nomura K, He SY, Voinnet O. Suppres-sion of the microRNA pathway by bacterial effector pro-teins. Science, 2008, 321(5891): 964–967. [45] Lu S, Sun YH, Amerson H, Chiang VL. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J, 2007, 51(6): 1077–1098. [46] Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity. Plant Physiol, 2009, 150(4): 1648–1655. [47] Yi H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell, 2007, 19(9): 2929–2939. [48] Padmanabhan C, Zhang X, Jin H. Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol, 2009, 12(4): 465–472 . [49] Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res, 2009, 19(1): 42–56. [50] Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. Sub-mergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adapta-tions in maize root cells. Ann Bot (Lond), 2008, 102(4): 509–519. [51] Zhou X, Wang G, Sutoh K, Zhu J-K, Zhang W. Identifica-tion of coldinducible microRNAs in plants by transcrip-tome analysis. Biochim Biophys Acta, 2008, 1779(11): 780–788. [52] Mao Y B, Cai W J, Wang J W, Hong GJ, Tao X Y, Wang L J, Huang Y P, Chen X Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi im-pairs larval tolerance of gossypol. Nat Biotech, 2007, 25(11): 1307–1313. [53] Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference. Nat Biotech, 2007, 5(11): 1322–1326. [54] Westwood JH, Roney JK, Khatibi PA, Stromberg VK. RNA translocation between parasitic plants and their hosts. Pest Manag Sci, 2009, 65(5): 533–539. [55] Pereira TC, Lopes-Cendes I. RNAi-mediated gene silenc-ing as a principle of action of venoms and poisons. Med Hypotheses, 2008, 70(6): 1179–1181. [56] 程仲毅, 薛庆中. 植物蛋白酶抑制剂基因结构、调控及其控制害虫的策略. 遗传学报, 2003, 30(8): 790–796. [57] Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol, 2008, 6(9): e230. [58] Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, Takeda R, Harris AR, Molina C, Nelson RS, Ding B. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol, 2007, 81(6): 2980–2094. [59] Schwind N, Zwiebel M, Itaya A, Ding B, Wang MB, Krczal G, Wassenegger M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato express-ing a viroid hairpin RNA construct. Mol Plant Pathol, 2009, 10(4): 459–469. [60] Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM. Sup-pression of RNA silencing by a geminivirus nuclear pro-tein, AC2, correlates with transactivation of host genes. J Virol, 2005, 79(4): 2517–2527. [61] Ye J, Qu J, Zhang JF, Geng YF, Fang RX. A critical do-main of the Cucumber mosaic virus 2b protein for RNA silencing suppressor activity. FEBS Lett, 2009, 583(1): 101–106. [62] Browne EP, Li J, Chong M, Littman DR. Virus-host in-teractions: new insights from the small RNA world. Ge-nome Biol, 2005, 6(11): 238. [63] Ye K, Patel DJ. RNA silencing suppressor p21 of Beet yellows virus forms an RNA binding octameric ring structure. Structure, 2005, 13(9): 1375–1384. [64] Zhang X, Du P, Lu L, Xiao Q, Wang W, Cao X, Ren B, Wei C, Li Y. Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato as-permy cucumovirus on the accumulation of siRNAs. Virology, 2008, 374(2): 351–360. [65] Csorba T, Bovi A, Dalmay T, Burgyán J. The p122 sub-unit of Tobacco Mosaic Virus replicase is a potent silenc-ing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol, 2007, 81(21): 11768–11780. [66] Vogler H, Akbergenov R, Shivaprasad PV, Dang V, Fasler M, Kwon MO, Zhanybekova S, Hohn T, Heinlein M. Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J Vi-rol, 2007, 81(19): 10379–10388. [67] Yu B, Chapman EJ, Yang Z, Carrington JC, Chen X. Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Lett, 2006, 580(13): 3117–3120. [68] Alvarado V, Scholthof HB. Plant responses against inva-sive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol, 2009, 20(9): 1032–1040. [69] Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM. Geminivirus AL2 and L2 proteins suppress transcrip-tional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol, 2009, 83(10): 5005–5013. [70] Cuellar WJ, Kreuze JF, Rajamäki ML, Cruzado KR, Un-tiveros M, Valkonen JP. Elimination of antiviral defense by viral RNase III. Proc Natl Acad Sci USA, 2009, 106(25): 10354–10358. [71] Díaz-Pendón JA, Ding SW. Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol, 2008, 46: 303–326. [72] Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y. Interaction with host SGS3 is re-quired for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci USA, 2008, 105(1): 157–161. [73] Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, Fukuhara T, Keller M, Voinnet O. Nuclear import of CaMV P6 is required for infection and suppres-sion of the RNA silencing factor DRB4. EMBO J, 2008, 27(15): 2102–2112. [74] ter Brake O, Haasnoot J, Kurreck J, Berkhout B. ESF-EMBO symposium: antiviral applications of RNA interference. Retrovirolog, 2008, 5: 81. [75] Qu J, Ye J, Fang R. Artificial microRNA-mediated virus resistance in plants. J Virol, 2007, 81(12): 6690–6699. [76] Eamens A, Wang MB, Smith NA, Waterhouse PM. RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol, 2008, 147(2): 456–468. |
[1] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[2] | 宋亚坤,张敏,王翘楚,彭玉荔,贾方兴,余春红. 利用RNA干扰技术沉默基因表达在本科实验教学中的设计与实践[J]. 遗传, 2019, 41(7): 653-661. |
[3] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[4] | 汤静思, 杨明耀, 李英. 假基因的功能及其在癌症疾病中的重要作用[J]. 遗传, 2015, 37(1): 8-16. |
[5] | 樊春燕, 魏强, 郝志强, 李广林. miRNAs调控lincRNAs的生物信息学预测与功能分析[J]. 遗传, 2014, 36(12): 1226-1234. |
[6] | 何苗,王子卫. miRNA与siRNA胃癌相关研究的现状及进展[J]. 遗传, 2011, 33(9): 925-930. |
[7] | 王天宇,董园园,李海燕,李校堃. MicroRNAs的分子进化与调控机制[J]. 遗传, 2010, 32(9): 874-880. |
[8] | 谢兆辉. 内源小RNAs在植物胁迫反应中的作用[J]. 遗传, 2009, 31(8): 809-817. |
[9] | 谢兆辉. 小RNAs作用机制的研究进展[J]. 遗传, 2009, 31(12): 1205-1213. |
[10] | 朱剑,余潮,朱友林. RNA沉默技术及其在植物中的应用[J]. 遗传, 2007, 29(1): 22-22―28. |
[11] | 陈功星,董庆华,张佳炜,符芳芳,许则丰,梁巧仪,郑树,丁佳逸. 特异小干扰RNA敲除PLK1基因的表达[J]. 遗传, 2006, 28(1): 21-25. |
[12] | 燕飞,成卓敏. RNA干扰机制研究进展[J]. 遗传, 2005, 27(1): 167-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: