Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (11): 1073-1080.doi: 10.16288/j.yczz.20-180
• Review • Previous Articles Next Articles
Bingyuan Wang, Yulian Mu, Kui Li, Zhiguo Liu()
Received:
2020-06-16
Revised:
2020-09-08
Online:
2020-11-20
Published:
2020-10-28
Contact:
Liu Zhiguo
E-mail:liuzhiguo@caas.cn
Supported by:
Bingyuan Wang, Yulian Mu, Kui Li, Zhiguo Liu. Research progress of stem cells in agricultural animals[J]. Hereditas(Beijing), 2020, 42(11): 1073-1080.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981,292(5819):154-156.
doi: 10.1038/292154a0 pmid: 7242681 |
[2] |
Labat ML . Stem cells and the promise of eternal youth: embryonic versus adult stem cells. Biomed Pharmacother, 2001,55(4):179-185.
doi: 10.1016/S0753-3322(01)00057-9 |
[3] | Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006,126(4):663-676. |
[4] | Qin T, Miao XY . Current progress and application prospects of induced pluripotent stem cells. Hereditas (Beijing), 2010,32(12):1205-1214. |
秦彤, 苗向阳 . iPS细胞研究的新进展及应用. 遗传, 2010,32(12):1205-1214. | |
[5] | Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ . In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod, 2019,100(4):885-895. |
[6] |
Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF . Stem cells on regenerative and reproductive science in domestic animals. Vet Res Commun, 2019,43(1):7-16.
doi: 10.1007/s11259-019-9744-6 pmid: 30656543 |
[7] |
Yang JR, Shiue YL, Liao CH, Lin SZ, Chen LR . Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning Stem Cells, 2009,11(2):235-244.
doi: 10.1089/clo.2008.0050 pmid: 19508116 |
[8] |
Pawar SS, Malakar D, De AK, Akshey YS . Stem cell-like outgrowths from in vitro fertilized goat blastocysts. Indian J Exp Biol, 2009,47(8):635-642.
pmid: 19775069 |
[9] | Zhang YN, Yang HY, Zhang ZT, Shi QQ, Wang D, Zheng MM, Li BC, Song JZ . Isolation of chicken embryonic stem cell and preparation of chicken chimeric model. Mol Biol Rep, 2013,40(3):2149-2156. |
[10] | Haraguchi S, Kikuchi K, Nakai M, Tokunaga T . Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J Reprod Dev, 2012,58(6):707-716. |
[11] | Siriboon C, Lin YH, Kere M, Chen CD, Chen LR, Chen CH, Tu CF, Lo NW, Ju JC . Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS One, 2015,10(2):e0118165. |
[12] | Esteban MA, Xu JY, Yang JY, Peng MX, Qin DJ, Li W, Jiang ZX, Chen JK, Deng K, Zhong M, Cai JL, Lai LX, Pei DQ . Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem, 2009,284(26):17634-17640. |
[13] | Chakritbudsabong W, Sariya L, Pamonsupornvichit S, Pronarkngver R, Chaiwattanarungruengpaisan S, Ferreira JN, Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T, Rungarunlert S . Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor- mediated reprogramming:VSMUi001-D. Stem Cell Res, 2017,24:21-24. |
[14] |
Gallegos-Cárdenas A, Webb R, Jordan E, West R, West FD, Yang JY, Wang K, Stice SL . Pig induced pluripotent stem cell-derived neural rosettes developmentally mimic human pluripotent stem cell neural differentiation. Stem Cells Dev, 2015,24(16):1901-1911.
doi: 10.1089/scd.2015.0025 pmid: 25826126 |
[15] | Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL . Pig induced pluripotent stem cell-derived neural rosettes parallel human differentiation into sensory neural subtypes. Cell Reprogram, 2017,19(2):88-94. |
[16] |
Liao YJ, Tang PC, Chen YH, Chu FH, Kang TC, Chen LR, Yang JR . Porcine induced pluripotent stem cell-derived osteoblast-like cells prevent glucocorticoid-induced bone loss in Lanyu pigs. PLoS One, 2018,13(8):e0202155.
doi: 10.1371/journal.pone.0202155 pmid: 30157199 |
[17] | Talbot NC, Blomberg LA, Garrett WM, Caperna TJ . Feeder-independent continuous culture of the PICM-19 pig liver stem cell line. In Vitro Cell Dev Biol Anim, 2010,46(9):746-757. |
[18] |
Talbot NC, Caperna TJ . A feeder-cell independent subpopulation of the PICM-19 pig liver stem cell line capable of long-term growth and extensive expansion. Cytotechnology, 2014,66(1):1-7.
pmid: 23397443 |
[19] | Xu JJ, Yu LQ, Guo JX, Xiang JZ, Zheng Z, Gao DF, Shi BB, Hao HY, Jiao DL, Zhong L, Wang Y, Wu J, Wei HJ, Han JY . Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system. Stem Cell Res Ther, 2019,10(1):193. |
[20] |
Zheng Y, Feng TY, Zhang PF, Lei PP, Li FY, Zeng WX . Establishment of cell lines with porcine spermatogonial stem cell properties. J Anim Sci Biotechnol, 2020,11:33.
doi: 10.1186/s40104-020-00439-0 pmid: 32308978 |
[21] | Huang L, Niu CG, Willard B, Zhao WM, Liu L, He W, Wu TW, Yang SL, Feng ST, Mu YL, Zheng LM, Li K . Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells. Stem Cell Res Ther, 2015,6(1):77. |
[22] |
Gao Q, Xia Y, Liu L, Huang L, Liu Y, Zhang X, Xu K, Wei JL, Hu YQ, Mu YL, Li K . Galectin-3 enhances migration of minature pig bone marrow mesenchymal stem cells through inhibition of RhoA-GTP activity. Sci Rep, 2016,6:26577.
pmid: 27215170 |
[23] | Han W, He X, Zhang MZ, Hu SX, Sun F, Ren LP, Hua JL, Peng S . Establishment of a porcine pancreatic stem cell line using T-REx(™) system-inducible Wnt3a expression. Cell Prolif, 2015,48(3):301-310. |
[24] |
Gurel Pekozer G, Ramazanoglu M, Schlegel KA, Kok FN, Torun Kose G . Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering. Artif Cells Nanomed Biotechnol, 2018,46(3):607-618.
doi: 10.1080/21691401.2017.1332637 pmid: 28562085 |
[25] | Lermen D, Gorjup E, Dyce PW, von Briesen H, Müller P. Neuro-muscular differentiation of adult porcine skin derived stem cell-like cells. PLoS One, 2010,5(1):e8968. |
[26] | Stieler Stewart A, Freund JM, Blikslager AT, Gonzalez LM . Intestinal stem cell isolation and culture in a porcine model of segmental small intestinal ischemia. J Vis Exp, 2018, ( 135):57647. |
[27] | Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong CQ, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ . Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci USA, 2018,115(9):2090-2095. |
[28] | Hill ABT, Bressan FF, Murphy BD, Garcia JM . Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther, 2019,10(1):44. |
[29] |
Pillai VV, Kei TG, Reddy SE, Das M, Abratte C, Cheong SH, Selvaraj V . Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim Sci J, 2019,90(9):1149-1160.
doi: 10.1111/asj.13272 pmid: 31322312 |
[30] |
Pipino C, Mandatori D, Buccella F, Lanuti P, Preziuso A, Castellani F, Grotta L, Di Tomo P, Marchetti S, Di Pietro N, Cichelli A, Pandolfi A, Martino G . Identification and characterization of a stem cell-like population in bovine milk: a potential new source for regenerative medicine in veterinary. Stem Cells Dev, 2018,27(22):1587-1597.
doi: 10.1089/scd.2018.0114 pmid: 30142991 |
[31] |
Kumar De A, Malakar D, Akshey YS, Jena MK, Dutta R . Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat( Capra hircus) embryos. Anim Biotechnol, 2011,22(4):181-196.
doi: 10.1080/10495398.2011.622189 |
[32] |
Garg S, Dutta R, Malakar D, Jena MK, Kumar D, Sahu S, Prakash B . Cardiomyocytes rhythmically beating generated from goat embryonic stem cell. Theriogenology, 2012,77(5):829-839.
doi: 10.1016/j.theriogenology.2011.05.029 |
[33] |
Song WC, Mu HL, Wu J, Liao MZ, Zhu HJ, Zheng LM, He X, Niu BW, Zhai YX, Bai CL, Lei AM, Li GP, Hua JL. miR-544 Regulates dairy goat male germline stem cell self-renewal via targeting PLZF. J Cell Biochem, 2015,116(10):2155-2165.
doi: 10.1002/jcb.25172 pmid: 25808723 |
[34] | Mrozik KM, Zilm PS, Bagley CJ, Hack S, Hoffmann P, Gronthos S, Bartold PM . Proteomic characterization of mesenchymal stem cell-like populations derived from ovine periodontal ligament, dental pulp, and bone marrow: analysis of differentially expressed proteins. Stem Cells Dev, 2010,19(10):1485-1499. |
[35] | Fadel L, Viana BR, Feitosa MLT, Ercolin ACM, Roballo KCS, Casals JB, Pieri NCG, Meirelles FV, Martins DDS, Miglino MA, Ambrósio CE . Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Cir Bras, 2011,26(4):267-273. |
[36] |
Zhang L, Wu YN, Li X, Wei S, Xing YM, Lian Z, Han HB . An alternative method for long-term culture of chicken embryonic stem cell in vitro. Stem Cells Int, 2018,2018:2157451.
pmid: 29861740 |
[37] |
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE . The evolution of chicken stem cell culture methods. Br Poult Sci, 2017,58(6):681-686.
doi: 10.1080/00071668.2017.1365354 pmid: 28840744 |
[38] | Zuo QS, Jin K, Wang YJ, Song JZ, Zhang YN, Li BC . CRISPR/Cas9-mediated deletion of C1EIS inhibits chicken embryonic stem cell differentiation into male germ cells (Gallus gallus). J Cell Biochem, 2017,118(8):2380-2386. |
[39] |
He NN, Wang YL, Zhang C, Wang M, Wang YJ, Zuo QS, Zhang YN, Li BC . Wnt signaling pathway regulates differentiation of chicken embryonic stem cells into spermatogonial stem cells via Wnt5a. J Cell Biochem, 2018,119(2):1689-1701.
pmid: 28786525 |
[40] | Wang M, Zhang C, Huang CL, Cheng SZ, He NN, Wang YL, Ahmed MF, Zhao RF, Jin J, Zuo QS, Zhang YN, Li BC . Regulation of fibroblast growth factor 8 (FGF8) in chicken embryonic stem cells differentiation into spermatogonial stem cells. J Cell Biochem, 2018,119(2):2396-2407. |
[41] |
Zhang C, Wang M, He NN, Ahmed MF, Wang YL, Zhao RF, Yu XJ, Jin J, Song JZ, Zuo QS, Zhang YN, Li BC . Hsd3b2 associated in modulating steroid hormone synthesis pathway regulates the differentiation of chicken embryonic stem cells into spermatogonial stem cells. J Cell Biochem, 2018,119(1):1111-1121.
pmid: 28703914 |
[42] |
Jin J, Zhao RF, Chen C, Zhou J, Lu ZY, Jin K, Zhang C, Wang M, Sun CH, Wang YJ, Zhang WH, Li TT, Zuo QS, Zhang YN, Chen GH, Li BC . The Lbc gene promotes differentiation of chicken embryo stem cell into spermatogonial stem cells via the regulation of transcriptional factor Hoxa5. J Cell Biochem, 2019, doi: 10.1002/jcb.27760.
pmid: 32918333 |
[1] | Wenrui Shi, Hongzhu Qu, Xiangdong Fang. Overview of multi-omics research in gout [J]. Hereditas(Beijing), 2023, 45(8): 643-657. |
[2] | Jun Ma, Anping Fan, Wusheng Wang, Jinchuan Zhang, Xiaojun Jiang, Ruijun Ma, Sheqiang Jia, Fei Liu, Chuchao Lei, Yongzhen Huang. Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing [J]. Hereditas(Beijing), 2023, 45(7): 602-616. |
[3] | Zhihui Gao, Jiaxin Huang, Haoyu Luo, Haidong Xu, Ming Lou, Bolin Ning, Xiaoxu Xing, Fang Mu, Hui Li, Ning Wang. Characterization of the genomic and transcriptional structure of chicken NRG4 gene [J]. Hereditas(Beijing), 2023, 45(5): 447-458. |
[4] | Yiming Gong, Xiangyu Wang, Xiaoyun He, Yufang Liu, Ping Yu, Mingxing Chu, Ran Di. Progress on the effect of FecB mutation on BMPR1B activity and BMP/SMAD pathway in sheep [J]. Hereditas(Beijing), 2023, 45(4): 295-305. |
[5] | Zhichen Tian, Xiaojuan Yin. Advances in the application of induced pluripotent stem cells in pediatric diseases [J]. Hereditas(Beijing), 2023, 45(1): 42-51. |
[6] | Yanan Li, Xianjun Zhang, Ning Zhang, Yalin Liang, Yuxing Zhang, Huaxing Zhao, Zicong Li, Sixiu Huang. Effects of overexpression of histone H3K9me3 demethylase on development of porcine cloned embryos [J]. Hereditas(Beijing), 2023, 45(1): 67-77. |
[7] | Fei Gao, Yu Wang, Jiaxiang Du, Xuguang Du, Jianguo Zhao, Dengke Pan, Sen Wu, Yaofeng Zhao. Advances and applications of genetically modified pig models in biomedical and agricultural field [J]. Hereditas(Beijing), 2023, 45(1): 6-28. |
[8] | Mengxuan Xu, Ming Zhou. Advances of RNA polymerase IV in controlling DNA methylation and development in plants [J]. Hereditas(Beijing), 2022, 44(7): 567-580. |
[9] | Yan Guo, Lele Yang, Huayu Qi. Transcriptome analysis of mouse male germline stem cells reveals characteristics of mature spermatogonial stem cells [J]. Hereditas(Beijing), 2022, 44(7): 591-608. |
[10] | Yan Zhao, Chenxin Wang, Tianming Yang, Chunshuang Li, Lihong Zhang, Dongni Du, Ruoxi Wang, Jing Wang, Min Wei, Xueqing Ba. Linking oxidative DNA lesion 8-OxoG to tumor development and progression [J]. Hereditas(Beijing), 2022, 44(6): 466-477. |
[11] | Shaozheng Song, Zhengyi He, Yong Cheng, Baoli Yu, Ting Zhang, Dan Li. MSTN modification in goat mediated by TALENs and performance analysis [J]. Hereditas(Beijing), 2022, 44(6): 531-542. |
[12] | Hui Qu, Yi Liu, Yawen Chen, Hui Wang. Alteration of imprinted genes and offspring organ development caused by environmental factors [J]. Hereditas(Beijing), 2022, 44(2): 107-116. |
[13] | Zhixin Yu, Pengyu Li, Kai Li, Shiying Miao, Linfang Wang, Wei Song. Progress on spermatogonial stem cell microenvironment [J]. Hereditas(Beijing), 2022, 44(12): 1103-1116. |
[14] | Yangjinghui Zhang, Peiyao Chang, Zishu Yang, Yuhang Xue, Xueqi Li, Yang Zhang. Advances in epigenetic modification affecting anthocyanin synthesis [J]. Hereditas(Beijing), 2022, 44(12): 1117-1127. |
[15] | Jiayu Yu, Ting Chen, Zhihua Wang, Juan Zheng, Tianshu Zeng. Diagnosis, treatment and genetic analysis of a case of skin hyperpigmentation as the only manifestation with X-linked adrenoleukodystrophy [J]. Hereditas(Beijing), 2022, 44(10): 983-989. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号