Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (2): 144-155.doi: 10.16288/j.yczz.22-302
Previous Articles Next Articles
Lan Wang(), Fan Zeng, Rongfeng Huang, Shu Lin, Zhihui Zhang, Min-Dian Li(
)
Received:
2022-10-13
Revised:
2023-01-30
Online:
2023-02-20
Published:
2023-02-03
Contact:
Li Min-Dian
E-mail:770944509@qq.com;mindianli@tmmu.edu.cn
Supported by:
Lan Wang, Fan Zeng, Rongfeng Huang, Shu Lin, Zhihui Zhang, Min-Dian Li. Adipocyte reconstitution of Npy4r gene in Npy4r silenced mice promotes diet-induced obesity[J]. Hereditas(Beijing), 2023, 45(2): 144-155.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Cypess AM. Reassessing human adipose tissue. N Engl J Med, 2022, 386(8): 768-779.
doi: 10.1056/NEJMra2032804 |
[2] |
Zeng F, Wang L, Wan XQ, Huang RF, Zhang ZH, Li MD. Targeting leptin-positive adipocytes by expressing the Cre recombinase transgene under the endogenous leptin gene. Hereditas(Beijing), 2022, 44(10): 950-957.
doi: 10.16288/j.yczz.22-236 pmid: 36384730 |
曾帆, 王澜, 万小勤, 黄荣凤, 张志辉, 李旻典. 瘦素基因启动的新型脂肪细胞表达Cre工具小鼠的构建. 遗传, 2022, 44(10): 950-957.
doi: 10.16288/j.yczz.22-236 pmid: 36384730 |
|
[3] |
Duerrschmid C, He YL, Wang CM, Li C, Bournat JC, Romere C, Saha PK, Lee ME, Phillips KJ, Jain M, Jia P, Zhao ZM, Farias M, Wu Q, Milewicz DM, Sutton VR, Moore DD, Butte NF, Krashes MJ, Xu Y, Chopra AR. Asprosin is a centrally acting orexigenic hormone. Nat Med, 2017, 23(12): 1444-1453.
doi: 10.1038/nm.4432 pmid: 29106398 |
[4] |
Li MD, Vera NB, Yang YF, Zhang BC, Ni WM, Ziso- Qejvanaj E, Ding S, Zhang KS, Yin RN, Wang SM, Zhou X, Fang EX, Xu T, Erion DM, Yang XY. Adipocyte OGT governs diet-induced hyperphagia and obesity. Nat Commun, 2018, 9(1): 5103.
doi: 10.1038/s41467-018-07461-x |
[5] |
Zeng WW, Pirzgalska RM, Pereira MMA, Kubasova N, Barateiro A, Seixas E, Lu YH, Kozlova A, Voss H, Martins GG, Friedman JM, Domingos AI. Sympathetic neuro- adipose connections mediate leptin-driven lipolysis. Cell, 2015, 163(1): 84-94.
doi: 10.1016/j.cell.2015.08.055 |
[6] |
Chi JY, Wu ZH, Choi CHJ, Nguyen L, Tegegne S, Ackerman SE, Crane A, Marchildon F, Tessier-Lavigne M, Cohen P. Three-Dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab, 2018, 27(1): 226-236.e3.
doi: S1550-4131(17)30724-6 pmid: 29320703 |
[7] |
Jiang HC, Ding XF, Cao Y, Wang HH, Zeng WW. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab, 2017, 26(4): 686-692.e3.
doi: S1550-4131(17)30501-6 pmid: 28918935 |
[8] |
Zeng X, Ye MC, Resch JM, Jedrychowski MP, Hu B, Lowell BB, Ginty DD, Spiegelman BM. Innervation of thermogenic adipose tissue via a calsyntenin 3beta-S100b axis. Nature, 2019, 569(7755): 229-235.
doi: 10.1038/s41586-019-1156-9 |
[9] |
Wang Y, Leung VH, Zhang YX, Nudell VS, Loud M, Servin-Vences MR, Yang D, Wang K, Moya-Garzon MD, Li VL, Long JZ, Patapoutian A, Ye L. The role of somatosensory innervation of adipose tissues. Nature, 2022, 609(7927): 569-574.
doi: 10.1038/s41586-022-05137-7 |
[10] |
Myers MG Jr, Affinati AH, Richardson N, Schwartz MW. Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab, 2021, 3(6): 737-750.
doi: 10.1038/s42255-021-00408-5 pmid: 34158655 |
[11] |
Rossi MA, Stuber GD. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab, 2018, 27(1): 42-56.
doi: S1550-4131(17)30609-5 pmid: 29107504 |
[12] |
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab, 2015, 26(3): 125-135.
doi: 10.1016/j.tem.2015.01.003 |
[13] |
Yan CX, Zeng TS, Lee KL, Nobis M, Loh K, Gou LN, Xia ZF, Gao ZM, Bensellam M, Hughes W, Lau J, Zhang L, Ip CK, Enriquez R, Gao H, Wang QP, Wu Q, Haigh JJ, Laybutt DR, Timpson P, Herzog H, Shi YC. Peripheral- specific Y1 receptor antagonism increases thermogenesis and protects against diet-induced obesity. Nat Commun, 2021, 12(1): 2622.
doi: 10.1038/s41467-021-22925-3 |
[14] |
Kuo LE, Kitlinska JB, Tilan JU, Li LJ, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med, 2007, 13(7): 803-811.
doi: 10.1038/nm1611 pmid: 17603492 |
[15] |
Shi YC, Lin S, Castillo L, Aljanova A, Enriquez RF, Nguyen AD, Baldock PA, Zhang L, Bijker MS, Macia L, Yulyaningsih E, Zhang H, Lau J, Sainsbury A, Herzog H. Peripheral-specific y 2 receptor knockdown protects mice from high-fat diet-induced obesity. Obesity (Silver Spring), 2011, 19(11): 2137-2148.
doi: 10.1038/oby.2011.99 |
[16] |
Rangwala SM, D'Aquino K, Zhang YM, Bader L, Edwards W, Zheng SM, Eckardt A, Lacombe A, Pick R, Moreno V, Kang LJ, Jian WY, Arnoult E, Case M, Jenkinson C, Chi E, Swanson RV, Kievit P, Grove K, Macielag M, Erion MD, SinhaRoy R, Leonard JN. A long-acting PYY(3-36) analog mediates robust anorectic efficacy with minimal emesis in nonhuman primates. Cell Metab, 2019, 29(4): 837-843.e5.
doi: S1550-4131(19)30017-8 pmid: 30773465 |
[17] |
Sainsbury A, Schwarzer C, Couzens M, Jenkins A, Oakes SR, Ormandy CJ, Herzog H. Y4 receptor knockout rescues fertility in ob/ob mice. Genes Dev, 2002, 16(9): 1077-1088.
doi: 10.1101/gad.979102 |
[18] |
Lin S, Shi YC, Yulyaningsih E, Aljanova A, Zhang L, Macia L, Nguyen AD, Lin EJ, During MJ, Herzog H, Sainsbury A. Critical role of arcuate Y4 receptors and the melanocortin system in pancreatic polypeptide-induced reduction in food intake in mice. PLoS One, 2009, 4(12): e8488.
doi: 10.1371/journal.pone.0008488 |
[19] |
Sainsbury A, Bergen HT, Boey D, Bamming D, Cooney GJ, Lin S, Couzens M, Stroth N, Lee NJ, Lindner D, Singewald N, Karl T, Duffy L, Enriquez R, Slack K, Sperk G, Herzog H. Y2Y 4 receptor double knockout protects against obesity due to a high-fat diet or Y 1 receptor deficiency in mice. Diabetes, 2006, 55(1): 19-26.
pmid: 16380472 |
[20] |
Eguchi J, Wang X, Yu ST, Kershaw EE, Chiu PC, Dushay J, Estall JL, Klein U, Maratos-Flier E, Rosen ED.Transcriptional control of adipose lipid handling by IRF4. Cell Metab, 2011, 13(3): 249-259.
doi: 10.1016/j.cmet.2011.02.005 pmid: 21356515 |
[21] |
Kong XX, Banks A, Liu TM, Kazak L, Rao RR, Cohen P, Wang X, Yu ST, Lo JC, Tseng YH, Cypess AM, Xue RD, Kleiner S, Kang S, Spiegelman BM, Rosen ED. IRF4 is a key thermogenic transcriptional partner of PGC-1alpha. Cell, 2014, 158(1): 69-83.
doi: 10.1016/j.cell.2014.04.049 |
[22] |
Virtue S, Vidal-Puig A. GTTs and ITTs in mice: simple tests, complex answers. Nat Metab, 2021, 3(7): 883-886.
doi: 10.1038/s42255-021-00414-7 pmid: 34117483 |
[23] |
Shin H, Ma YY, Chanturiya T, Cao Q, Wang YL, Kadegowda AKG, Jackson R, Rumore D, Xue BZ, Shi H, Gavrilova O, Yu LQ. Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab, 2017, 26(5): 764-777.e5.
doi: S1550-4131(17)30553-3 pmid: 28988822 |
[24] | Zhao QW, Pan DN. Progress on the epigenetic regulation of adipose tissue thermogenesis. Hereditas (Beijing), 2022, 44(10): 867-880. |
赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展. 遗传, 2022, 44(10): 867-880. | |
[25] |
Tang Y, He Y, Li C, Mu WJ, Zou Y, Liu CH, Qian SW, Zhang FC, Pan JB, Wang YN, Huang HY, Pan DN, Yang PY, Mei J, Zeng R, Tang QQ. RPS3A positively regulates the mitochondrial function of human periaortic adipose tissue and is associated with coronary artery diseases. Cell Discov, 2018, 4: 52.
doi: 10.1038/s41421-018-0041-2 pmid: 30131868 |
[26] | Koronowski KB, Kinouchi K, Welz PS, Smith JG, Zinna VM, Shi JJ, Samad M, Chen SW, Magnan CN, Kinchen JM, Li W, Baldi P, Benitah SA, Sassone-Corsi P. Defining the independence of the liver circadian clock. Cell, 2019, 177(6): 1448-1462.e14. |
[27] |
Welz PS, Zinna VM, Symeonidi A, Koronowski KB, Kinouchi K, Smith JG, Guillén IM, Castellanos A, Furrow S, Aragón F, Crainiciuc G, Prats N, Caballero JM, Hidalgo A, Sassone-Corsi P, Benitah SA. BMAL1-driven tissue clocks respond independently to light to maintain homeostasis. Cell, 2019, 177(6): 1436-1447.e12.
doi: 10.1016/j.cell.2019.05.009 |
[28] |
Tang TT, Tan QX, Han S, Diemar A, Löbner K, Wang HY, Schüß C, Behr V, Mörl K, Wang M, Chu XJ, Yi CY, Keller M, Kofoed J, Reedtz-Runge S, Kaiser A, Beck-Sickinger AG, Zhao Q, Wu B. Receptor-specific recognition of NPY peptides revealed by structures of NPY receptors. Sci Adv, 2022, 8(18): eabm1232.
doi: 10.1126/sciadv.abm1232 |
[29] |
Wang L, Pydi SP, Zhu L, Barella LF, Cui YH, Gavrilova O, Bence KK, Vernochet C, Wess J. Adipocyte G(i) signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat Commun, 2020, 11(1): 2995.
doi: 10.1038/s41467-020-16756-x pmid: 32532984 |
[1] | Fan Zeng, Lan Wang, Xiaoqin Wan, Rongfeng Huang, Zhihui Zhang, Min-Dian Li. Targeting leptin-positive adipocytes by expressing the Cre recombinase transgene under the endogenous leptin gene [J]. Hereditas(Beijing), 2022, 44(10): 950-957. |
[2] | Qingwen Zhao, Dongning Pan. Progress on the epigenetic regulation of adipose tissue thermogenesis [J]. Hereditas(Beijing), 2022, 44(10): 867-880. |
[3] | Kun Du, Chuyang Mao, Anyong Ren, Xuemei Wu, Qingling Li, Tingting Chen, Shiyi Chen, Songjia Lai. Analysis of gene expression profiles at different stages during preadipocyte differentiation in rabbits [J]. Hereditas(Beijing), 2020, 42(3): 309-320. |
[4] | Xin Huang,Yongqiang Chen,Guoliang Xu,Shuhong Peng. DNA methylation in adipose tissue and the development of diabetes and obesity [J]. Hereditas(Beijing), 2019, 41(2): 98-110. |
[5] | Li Huan, Feng Jinchuan, Li Guilin, Wang Xun, Li Mingzhou, Liu Haifeng. The effect of lnc-RAP3 on 3T3-L1 preadipocyte differentiation in mouse [J]. Hereditas(Beijing), 2018, 40(9): 758-766. |
[6] | Xiaofei Zhang,He Song,Jing Liu,Wenjian Zhang,Xiaohong Yan,Hui Li,Ning Wang. Identification and analysis of ZFPM2 as a target gene of miR-17-92 cluster in chicken [J]. Hereditas(Beijing), 2017, 39(4): 333-345. |
[7] | Jun Zhang, Wangqiang Zhang, Yulei DING, Peng Xu, Tingting WANG, Wenjing Xu, Huan Lu, Zongzhi Liu, Jianxin Xie. Correlation between type 2 diabetes and DNA methylation and mRNA expression of APN in abdominal adipose tissues in Xinjiang Uygur population [J]. HEREDITAS(Beijing), 2015, 37(3): 269-275. |
[8] | Yuntao Guo, Xiangyang Miao. MicroRNAs in the regulation of brown adipocyte differentiation [J]. HEREDITAS(Beijing), 2015, 37(3): 240-249. |
[9] | Jinwei Zhang, Yi Luo, Yuhao Wang, Liujun He, Mingzhou Li, Xun Wang. MicroRNA regulates animal adipocyte differentiation [J]. HEREDITAS(Beijing), 2015, 37(12): 1175-1184. |
[10] | WANG Li, NA Wei, WANG Yu-Xiang, WANG Yan-Bo, WANG Ning, WANG Qi-Gui, LI Yu-Mao, LI Hui. Characterization of chicken PPARγ expression and its impact on adipocyte proliferation and differentiation [J]. HEREDITAS, 2012, 34(4): 454-464. |
[11] | GUO Yun-Xue, MO De-Lin, CHEN Yao-Sheng, ZHANG Yue, ZHANG Yun, XIAO Shu-Qi, LIU Xiao-Hong. Effects of PI3K/AKT inhibitor wortmannin on proliferation and apoptosis of primary porcine preadipocytes [J]. HEREDITAS, 2012, 34(10): 1282-1290. |
[12] | LIU Hai-Feng, ZHANG Xu, LI Ming-Zhou, LI Xue-Wei. Effects of rosiglitazone on expression patterns of the genes involved in adipogenesis during porcine preadipocytes differentiation [J]. HEREDITAS, 2009, 31(7): 719-724. |
[13] | GUO Yu-Jiao, TANG Guo-Qing, LI Xue-Wei, ZHU Li, LI Ming-Zhou. Developmental expression changes of IGF2 and IGFBP3 genes in adipose tissue of two pig breeds [J]. HEREDITAS, 2008, 30(5): 602-606. |
[14] | BAI Liang, PANG Wei-Jun, YANG Gong-She. Sirt1: A Novel Adipocyte and Myocyte Regulatory Factor [J]. HEREDITAS, 2006, 28(11): 1462-1466. |
[15] | WANG Chen, WANG Li, YANG Ze. Role of Protein Tyrosine Phosphatase 1B in the Type 2 Diabetes and Obesity [J]. HEREDITAS, 2004, 26(6): 941-946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号