[1] Mattick JS. The hidden genetic program of complex or-ganisms. Sci Am, 2004, 291(4): 60–67.
[2] Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet, 2006, 15(Spec No 1): R17–29.
[3] Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Non-coding RNAs in the mammalian central nervous system. Annu Rev Neurosci, 2006, 29: 77–103.
[4] Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science, 2007, 318(5851): 761–764.
[5] Finnegan EJ, Matzke MA. The small RNA world. J Cell Sci, 2003, 116(Pt 23): 4689–4693.
[6] Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 2006, 442(7099): 199–202.
[7] Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642–655.
[8] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543): 853–858.
[9] Mahony S, Corcoran DL, Feingold E, Benos PV. Regula-tory conservation of protein coding and microRNA genes in vertebrates: lessons from the opossum genome. Genome Biol, 2007, 8(5): R84.
[10] Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA, 2003, 9(2): 175–179.
[11] Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H. Cluster-ing and conservation patterns of human microRNAs. Nu-cleic Acids Res, 2005, 33(8): 2697–2706.
[12] Ruby JG, Jan CH, Bartel DP. Intronic microRNA precur-sors that bypass Drosha processing. Nature, 2007, 448(7149): 83–86.
[13] Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB. Patterns of flanking sequence conservation and a characteristic up-stream motif for microRNA gene identification. RNA, 2004, 10(9): 1309–1322.
[14] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281–297.
[15] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956): 415–419.
[16] Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA, 2003, 9(3): 277–279.
[17] Basyuk E, Suavet F, Doglio A, Bordonne R, Bertrand E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res, 2003, 31(22): 6593–6597.
[18] Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 2009, 11(3): 228–234.
[19] Du T, Zamore PD. MicroPrimer: the biogenesis and function of microRNA. Development, 2005, 132(21): 4645–4652.
[20] Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 2001, 15(2): 188–200.
[21] Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 1999, 216(2): 671–680.
[22] Lee RC, Feinbaum RL, Ambros V. The C. elegans hetero-chronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854.
[23] Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bet-tinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Cae |