Hereditas(Beijing) ›› 2025, Vol. 47 ›› Issue (3): 366-381.doi: 10.16288/j.yczz.24-201
• Research Article • Previous Articles Next Articles
Min Chen(), Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li(
)
Received:
2024-07-01
Revised:
2024-09-18
Online:
2025-03-20
Published:
2024-09-25
Contact:
Dongmei Li
E-mail:cm593691225@163.com;lidongmei@icdc.cn
Supported by:
Min Chen, Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li. Differential transcriptome profiling of Bartonella spp. influenced by the species divergence factors[J]. Hereditas(Beijing), 2025, 47(3): 366-381.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The basic information of 27 Bartonella strains"
宿主 | 种 | 数量 | 地区 | 菌株 |
---|---|---|---|---|
家猫 | B. henselae | 12 | 北京 | M2BJCW、M6BJND、M1BJ、M13BJ |
山东 | M68SHDLC、M45SHDLC、M7SHDLC、M20SHD | |||
河南 | M61HENAN、M145HEN、M8HEN | |||
美国 | Houston-1(ATCC 49882) | |||
B. koehlerae | 1 | 美国 | C-29(ATCC 700693) | |
B. clarridgeiae | 2 | 美国 | Houston-2 cat(ATCC 51734) | |
河南 | M9HENGX | |||
猕猴 | B. quintana | 12 | 四川 | HOU35SC、HOU38SC、HOU40SC、HOU52SC、HOU56SC、HOU98SC、HOU11SC、HOU128SC、HOU6SC |
北京 | S13、M22 | |||
人 | B. quintana | 1 | 美国 | Toulose(ATCC VR-358) |
Table 2
The results of transcriptome sequencing"
宿主 | 种 | 菌株 | 原始读数 | 干净读数 | 干净碱基(Gb) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|---|
家猫 | B. henselae | M1BJ | 19,373,610 | 17,135,816 | 2.4 | 94.48 | 49.28 |
M2BJCW | 20,214,804 | 17,079,420 | 2.4 | 94.26 | 39.19 | ||
M6BJND | 25,446,512 | 23,753,754 | 3.4 | 93.93 | 42.50 | ||
M8HEN | 22,528,882 | 20,764,324 | 3.0 | 91.79 | 41.87 | ||
M13BJ | 26,843,230 | 17,893,966 | 2.6 | 94.04 | 40.79 | ||
M20SHDLC | 24,957,434 | 16,708,256 | 2.4 | 93.39 | 39.83 | ||
M61HENAN | 25,530,012 | 23,739,144 | 3.4 | 94.73 | 49.26 | ||
M68SHDLC | 19,484,726 | 17,703,444 | 2.6 | 93.71 | 41.57 | ||
M45SHDLC | 28,372,858 | 21,239,212 | 3.0 | 91.98 | 40.21 | ||
M145HEN | 26,954,782 | 24,001,022 | 3.4 | 92.68 | 43.92 | ||
M7SHDLC | 22,564,912 | 17,713,422 | 2.6 | 93.10 | 41.14 | ||
Houston-1 | 25,882,948 | 15,769,192 | 2.2 | 93.47 | 40.71 | ||
B. koehlerae | C-29 | 31,326,614 | 11,339,002 | 1.6 | 94.68 | 44.30 | |
B. clarridgeiae | Houston-2 cat | 24,183,352 | 17,036,452 | 2.4 | 93.89 | 37.92 | |
M9HENGX | 24,928,200 | 15,652,306 | 2.2 | 93.51 | 36.36 | ||
猕猴 | B. quintana | HOU98SC | 53,833,058 | 37,058,642 | 5.4 | 92.18 | 45.11 |
HOU6SC | 28,717,110 | 17,282,722 | 2.4 | 93.75 | 43.31 | ||
M22 | 25,862,670 | 14,615,018 | 2.0 | 94.69 | 41.72 | ||
S13 | 19,242,020 | 17,893,966 | 2.6 | 95.50 | 43.90 | ||
HOU52SC | 23,663,466 | 20,378,338 | 3.0 | 91.45 | 45.73 | ||
HOU35SC | 31,005,158 | 25,245,900 | 3.6 | 93.42 | 49.65 | ||
HOU38SC | 18,593,934 | 13,888,642 | 2.6 | 91.44 | 43.41 | ||
HOU40SC | 24,852,202 | 23,369,370 | 3.4 | 95.04 | 48.24 | ||
HOU56SC | 24,512,310 | 18,701,146 | 2.6 | 93.88 | 45.53 | ||
HOU128SC | 23,994,176 | 19,540,850 | 2.8 | 94.27 | 45.11 | ||
HOU11SC | 23,544,806 | 17,121,884 | 2.4 | 94.26 | 45.57 | ||
人 | B. quintana | Toulose | 31,136,226 | 12,707,986 | 1.9 | 94.68 | 46.34 |
Table 4
The pathways involved in the KEGG enrichment analysis of DEGs"
编号 | 途径 | 编号 | 途径 |
---|---|---|---|
ko03016 | 转运核糖核酸的生物生成 | ko00785 | 硫辛酸代谢 |
ko03009 | 核糖体生物发生 | ko00564 | 甘油磷脂代谢 |
ko03010 | 核糖体 | ko00061 | 脂肪酸的生物合成 |
ko00240 | 嘧啶代谢 | ko03400 | DNA修复和重组蛋白 |
ko00230 | 嘌呤代谢 | ko00300 | 赖氨酸的生物合成 |
ko03060 | 蛋白质输出 | ko00020 | 柠檬酸循环(TCA循环) |
ko02048 | 原核生物防御系统 | ko03036 | 染色体和相关蛋白 |
ko00860 | 卟啉代谢 | ko03110 | 伴侣蛋白和折叠催化剂 |
ko03011 | 核糖体 | ko03410 | 碱基切除修复 |
ko01007 | 氨基酸相关酶 | ko03070 | 细菌分泌系统 |
ko01011 | 肽聚糖生物合成和降解蛋白 | ko00220 | 精氨酸的生物合成 |
ko00190 | 氧化磷酸化 | ko00970 | 氨基酰-tRNA的生物合成 |
Table 5
The number of CDS in transcriptomic and genomic data"
宿主 | 种 | 菌株 | CDS数量 | |
---|---|---|---|---|
转录组 | 基因组 | |||
家猫 | B. henselae | M1BJ | 922 | 1,347 |
M2BJCW | 1,332 | 1,348 | ||
M6BJND | 1,277 | 1,342 | ||
M8HEN | 1,295 | 1,347 | ||
M13BJ | 1,326 | 1,326 | ||
M20SHDLC | 1,326 | 1,326 | ||
M61HENAN | 945 | 1,343 | ||
M68SHDLC | 1,315 | 1,341 | ||
M45SHDLC | 1,327 | 1,327 | ||
M145HEN | 1,220 | 1,330 | ||
M7SHDLC | 1,316 | 1,329 | ||
Houston-1 | 1,348 | 1,348 | ||
B. koehlerae | C-29 | 1,201 | 1,202 | |
B. clarridgeiae | Houston-2 cat | 1,132 | 1,132 | |
M9HENGX | 1,132 | 1,131 | ||
猕猴 | B. quintana | HOU98SC | 1,107 | 1,107 |
HOU6SC | 1,107 | 1,107 | ||
M22 | 1,107 | 1,107 | ||
S13 | 1,097 | 1,107 | ||
HOU52SC | 995 | 1,107 | ||
HOU35SC | 813 | 1,109 | ||
HOU38SC | 600 | 1,107 | ||
HOU40SC | 923 | 1,107 | ||
HOU56SC | 1,107 | 1,107 | ||
HOU128SC | 1,107 | 1,107 | ||
HOU11SC | 1,107 | 1,107 | ||
人 | B. quintana | Toulose | 1,104 | 1,105 |
[1] | Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol, 2019, 21(3): e13004. |
[2] | Chomel BB, Boulouis HJ, Breitschwerdt EB, Kasten RW, Vayssier-Taussat M, Birtles RJ, Koehler JE, Dehio C. Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res, 2009, 40(2): 29. |
[3] |
Dehio C. Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol, 2005, 3(8): 621-631.
pmid: 16064054 |
[4] |
Kosoy M, McKee C, Albayrak L, Fofanov Y. Genotyping of Bartonella bacteria and their animal hosts: current status and perspectives. Parasitology, 2018, 145(5): 543-562.
doi: 10.1017/S0031182017001263 pmid: 28764816 |
[5] |
O'Rourke F, Schmidgen T, Kaiser PO, Linke D, Kempf VAJ. Adhesins of Bartonella spp. Adv Exp Med Biol, 2011, 715: 51-70.
doi: 10.1007/978-94-007-0940-9_4 pmid: 21557057 |
[6] | Tahmasebi Ashtiani Z, Ahmadinezhad M, Bagheri Amiri F, Esmaeili S. Geographical distribution of Bartonella spp in the countries of the WHO Eastern Mediterranean Region (WHO-EMRO). J Infect Public Health, 2024, 17(4): 612-618. |
[7] | Sricharern W, Kaewchot S, Saengsawang P, Kaewmongkol S, Inpankaew T. Molecular detection of Bartonella quintana among long-tailed macaques (Macaca fascicularis) in Thailand. Pathogens, 2021, 10(5): 629. |
[8] | Vayssier-Taussat M, Le Rhun D, Bonnet S, Cotté V. Insights in Bartonella host specificity. Ann N Y Acad Sci, 2009, 1166: 127-132. |
[9] | Mosepele M, Mazo D, Cohn J. Bartonella infection in immunocompromised hosts: immunology of vascular infection and vasoproliferation. Clin Dev Immunol, 2012, 2012: 612809. |
[10] | Regier Y, O Rourke F, Kempf VAJ. Bartonella spp. - a chance to establish One Health concepts in veterinary and human medicine. Parasit Vectors, 2016, 9(1): 261. |
[11] | Yap SM, Saeed M, Logan P, Healy DG. Bartonella neuroretinitis (cat-scratch disease). Pract Neurol, 2020, 20(6): 505-506. |
[12] | Su ZH, Sasaki A, Kusumi J, Chou PA, Tzeng HY, Li HQ, Yu H. Pollinator sharing, copollination, and speciation by host shifting among six closely related dioecious fig species. Commun Biol, 2022, 5(1): 284. |
[13] | Maier PA, Vandergast AG, Bohonak AJ. Yosemite toad (Anaxyrus canorus) transcriptome reveals interplay between speciation genes and adaptive introgression. Mol Ecol, 2024, 33(8): e17317. |
[14] |
McCulloch GA, Foster BJ, Dutoit L, Harrop TWR, Guhlin J, Dearden PK, Waters JM. Genomics reveals widespread ecological speciation in flightless insects. Syst Biol, 2021, 70(5): 863-876.
doi: 10.1093/sysbio/syaa094 pmid: 33346837 |
[15] | Wang YJ, Qiao ZL, Mao LY, Li F, Liang XL, An X, Zhang SZ, Liu X, Kuang ZR, Wan N, Nevo E, Li KX. Sympatric speciation of the spiny mouse from Evolution Canyon in Israel substantiated genomically and methylomically. Proc Natl Acad Sci USA, 2022, 119(13): e2121822119. |
[16] | Liu X, Zhang SZ, Cai ZY, Kuang ZR, Wan N, Wang YJ, Mao LY, An X, Li F, Feng T, Liang XL, Qiao ZL, Nevo E, Li KX. Genomic insights into zokors' phylogeny and speciation in China. Proc Natl Acad Sci USA, 2022, 119(19): e2121819119. |
[17] |
Zhou CW, Xiao SJ, Liu YC, Mou ZB, Zhou JS, Pan YZ, Zhang C, Wang J, Deng XX, Zou M, Liu HP. Comprehensive transcriptome data for endemic Schizothoracinae fish in the Tibetan Plateau. Sci Data, 2020, 7(1): 28.
doi: 10.1038/s41597-020-0361-6 pmid: 31964888 |
[18] | Wang XW, Zhao QY, Luan JB, Wang YJ, Yan GH, Liu SS. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics, 2012, 13: 529. |
[19] | Abromaitis S, Nelson CS, Previte D, Yoon KS, Clark JM, DeRisi JL, Koehler JE. Bartonella quintana deploys host and vector temperature-specific transcriptomes. PLoS One, 2013, 8(3): e58773. |
[20] | Tu N, Carroll RK, Weiss A, Shaw LN, Nicolas G, Thomas S, Lima A, Okaro U, Anderson B. A family of genus-specific RNAs in tandem with DNA-binding proteins control expression of the badA major virulence factor gene in Bartonella henselae. Microbiologyopen, 2017, 6(2): e00420. |
[21] | Shen W, Le S, Li Y, Hu FQ. SeqKit: a cross-platform and ultrafast toolkit for fasta/q file manipulation. PLoS One, 2016, 11(10): e0163962. |
[22] | Guo JY, Sun YL, Luo XY, Li MX, He P, He L, Zhao JL. De novo transcriptome sequencing and comparative analysis of Haemaphysalis flava Neumann, 1897 at larvae and nymph stages. Infect Genet Evol, 2019, 75: 104008. |
[23] |
Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152.
doi: 10.1093/bioinformatics/bts565 pmid: 23060610 |
[24] |
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol, 2019, 1962: 227-245.
doi: 10.1007/978-1-4939-9173-0_14 pmid: 31020564 |
[25] | Roegner ME, Watson RD. De novo transcriptome assembly and functional annotation for y-organs of the blue crab (Callinectes sapidus), and analysis of differentially expressed genes during pre-molt. Gen Comp Endocrinol, 2020, 298: 113567. |
[26] |
Fobe TL, Kazakov A, Riccardi D. Cys.sqlite: a structured-information approach to the comprehensive analysis of cysteine disulfide bonds in the protein databank. J Chem Inf Model, 2019, 59(2): 931-943.
doi: 10.1021/acs.jcim.8b00950 pmid: 30694665 |
[27] |
Zhao SR, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA, 2020, 26(8): 903-909.
doi: 10.1261/rna.074922.120 pmid: 32284352 |
[28] | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15(12): 550. |
[29] | Sarma RJ, Subbarayan S, Zohmingthanga J, Chenkual S, Zomuana T, Lalruatfela ST, Pautu JL, Maitra A, Kumar NS. Transcriptome analysis reveals SALL4 as a prognostic key gene in gastric adenocarcinoma. J Egypt Natl Canc Inst, 2022, 34(1): 11. |
[30] |
Yu GC, Wang LG, Han YY, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5): 284-287.
doi: 10.1089/omi.2011.0118 pmid: 22455463 |
[31] |
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33(3): 290-295.
doi: 10.1038/nbt.3122 pmid: 25690850 |
[32] |
Pertea G, Pertea M. Gff utilities: GffRead and GffCompare. F1000Res, 2020, 9: 304.
doi: 10.12688/f1000research.23297.1 pmid: 32489650 |
[33] |
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14): 2068-2069.
doi: 10.1093/bioinformatics/btu153 pmid: 24642063 |
[34] |
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015, 31(22): 3691-3693.
doi: 10.1093/bioinformatics/btv421 pmid: 26198102 |
[35] | Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. SNP-sites: rapid efficient extraction of SNPs from multi-fasta alignments. Microb Genom, 2016, 2(4): e000056. |
[36] | Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32(1): 268-274. |
[37] |
Huelsenbeck JP, Ronquist F. MrBayes: bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8): 754-755.
doi: 10.1093/bioinformatics/17.8.754 pmid: 11524383 |
[38] | Li YY, Lin SJ, Lu YH, Hu HL, Wang ZH. Research on diversity and phylogenetics of Trametes in Fujian province. Guangdong AG Sci, 2014, 41(10): 146-151, 159. |
李央央, 林顺吉, 芦宇航, 胡红莉, 王宗华. 福建栓菌多样性及分子系统学研究. 广东农业科学, 2014, 41(10): 146-151, 159. | |
[39] | Zheng ZY, Li Y, Li MJ, Li GT, Du X, Hongyin H, Yin M, Lu ZQ, Zhang X, Shrestha N, Liu JQ, Yang YZ. Whole-genome diversification analysis of the Hornbeam species reveals speciation and adaptation among closely related species. Front Plant Sci, 2021, 12: 581704. |
[40] |
Morales P, Gajardo F, Valdivieso C, Valladares MA, Di Genova A, Orellana A, Gutiérrez RA, González M, Montecino M, Maass A, Méndez MA, Allende ML. Genomes of the Orestias pupfish from the Andean Altiplano shed light on their evolutionary history and phylogenetic relationships within Cyprinodontiformes. BMC Genomics, 2024, 25(1): 614.
doi: 10.1186/s12864-024-10416-w pmid: 38890559 |
[41] | Fu PC, Twyford AD, Hao YT, Zhang Y, Chen SL, Sun SS. Hybridization and divergent climatic preferences drive divergence of two allopatric Gentiana species on the Qinghai-Tibet Plateau. Ann Bot, 2023, 132(7): 1271-1288. |
[42] | Dool SE, Picker MD, Eberhard MJB. Limited dispersal and local adaptation promote allopatric speciation in a biodiversity hotspot. Mol Ecol, 2022, 31(1): 279-295. |
[43] | Liu R, Ma LY, Wang HM, Liu D, Lu XL, Huang XP, Huang SS, Liu XD. Comparative genomics reveals intraspecific divergence of Acidithiobacillus ferrooxidans: insights from evolutionary adaptation. Microb Genom, 2023, 9(6): mgen001038. |
[44] | Cridland JM, Contino CE, Begun DJ. Selection and geography shape male reproductive tract transcriptomes in Drosophila melanogaster. Genetics, 2023, 224(1): iyad034. |
[45] | Chen N, Zhang H, Zang E, Liu ZX, Lan YF, Hao WL, He S, Fan X, Sun GL, Wang YL. Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains. BMC Genomics, 2022, 23(1): 466. |
[46] | Jin WT, Gernandt DS, Wehenkel C, Xia XM, Wei XX, Wang XQ. Phylogenomic and ecological analysis reveal the spatiotemporal evolution of global pines. Proc Natl Acad Sci USA, 2021, 118(20): e2022302118. |
[47] | Zhao YJ, Cao Y, Wang J, Xiong Z. Transcriptome sequencing of Pinus kesiya var. langbianensis and comparative analysis in the Pinus phylogeny. BMC Genomics, 2018, 19(1): 725. |
[48] | McKee CD, Hayman DTS, Kosoy MY, Webb CT. Phylogenetic and geographic patterns of Bartonella host shifts among bat species. Infect Genet Evol, 2016, 44: 382-394. |
[49] | McKee CD, Bai Y, Webb CT, Kosoy MY. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. Infect Genet Evol, 2021, 89: 104719. |
[50] | Liu HW, Li CX, Li Fen, Lu CJ, Wu SY, Qin WQ. Transcriptome analysis and gene function annotation of Tetrastichus brontispae. Chin J Biol control, 2021, 37(3): 412-419. |
刘华伟, 李朝绪, 李芬, 吕朝军, 吴少英, 覃伟权. 椰心叶甲啮小蜂转录组分析及基因功能注释. 中国生物防治学报, 2021, 37(3): 412-419.
doi: 10.16409/j.cnki.2095-039x.2021.03.016 |
|
[51] | Xin Jing, Li BIN, Ye Peng, Liu Cheng, Tang JR, Zhang GL, Xin PY. Transcriptome sequence analysis and functional annotation of Camellia fascicularis H. T. Chang. Non-wood Forest Res, 2020, 38(3): 85-94. |
辛静, 李斌, 叶鹏, 刘成, 唐军荣, 张贵良, 辛培尧. 云南金花茶转录组序列分析及功能注释. 经济林研究, 2020, 38(3): 85-94. | |
[52] | Liu D, Zeng QM, Liu B, Li Y, Chen SP. Transcriptome analysis and gene functional annotation in Phoebe bournei. BBR, 2020, 40(4): 613-622. |
刘丹, 曾钦朦, 刘斌, 李煜, 陈世品. 闽楠转录组分析及基因功能注释. 植物研究, 2020, 40(4): 613-622.
doi: 10.7525/j.issn.1673-5102.2020.04.016 |
|
[53] | Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host? Front Immunol, 2018, 9: 2416. |
[54] | Buffet JP, Pisanu B, Brisse S, Roussel S, Félix B, Halos L, Chapuis JL, Vayssier-Taussat M. Deciphering Bartonella diversity, recombination, and host specificity in a rodent community. PLoS One, 2013, 8(7): e68956. |
[55] | Fromm K, Dehio C. The impact of Bartonella VirB/VirD4 type IV secretion system effectors on eukaryotic host cells. Front Microbiol, 2021, 12: 762582. |
[56] |
Schröder G, Dehio C. Virulence-associated type IV secretion systems of Bartonella. Trends Microbiol, 2005, 13(7): 336-342.
pmid: 15935675 |
[57] | Wang CY, Zhang HR, Fu JQ, Wang M, Cai YH, Ding TY, Jiang JZ, Koehler JE, Liu XY, Yuan CL. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog, 2021, 17(1): e1009065. |
[58] |
Villamil Giraldo AM, Mary C, Sivanesan D, Baron C. VirB6 and VirB10 from the Brucella type IV secretion system interact via the N-terminal periplasmic domain of VirB6. FEBS Lett, 2015, 589(15): 1883-1889.
doi: 10.1016/j.febslet.2015.05.051 pmid: 26071378 |
[59] |
Atmakuri K, Cascales E, Christie PJ. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol, 2004, 54(5): 1199-1211.
pmid: 15554962 |
[60] | Marlaire S, Dehio C. Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane. PLoS Pathog, 2021, 17(1): e1008548. |
[61] |
Truttmann MC, Rhomberg TA, Dehio C. Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cell Microbiol, 2011, 13(2): 284-299.
doi: 10.1111/j.1462-5822.2010.01535.x pmid: 20964799 |
[62] | Hook C, Eremina N, Zaytsev P, Varlamova D, Stoynova N. The Escherichia coli amino acid uptake protein CycA: regulation of its synthesis and practical application in l-Isoleucine production. Microorganisms, 2022, 10(3): 647. |
[63] | Shi HM, Zhang L, Gu J, Li JY, Liu ZX, Deng JY. CycA-dependent glycine assimilation is connected to novobiocin susceptibility in Escherichia coli. Microbiol Spectr, 2022, 10(6): e0250122. |
[64] | Phillips GJ, Silhavy TJ. The E. coli ffh gene is necessary for viability and efficient protein export. Nature, 1992, 359(6397): 744-746. |
[65] |
Patel S, Austen BM. Substitution of fifty four homologue (Ffh) in Escherichia coli with the mammalian 54-kDa protein of signal-recognition particle. Eur J Biochem, 1996, 238(3): 760-768.
pmid: 8706678 |
[66] | Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One, 2014, 9(8): e103326. |
[67] |
Quiblier C, Zinkernagel AS, Schuepbach RA, Berger- Bächi B, Senn MM. Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors. BMC Microbiol, 2011, 11: 72.
doi: 10.1186/1471-2180-11-72 pmid: 21486434 |
[68] | Guo LN, Huang LX, Su YQ, Qin YX, Zhao LM, Yan QP. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen, 2018, 7(2): e00551. |
[69] | Jain K, Stanage TH, Wood EA, Cox MM. The Escherichia coli serS gene promoter region overlaps with the rarA gene. PLoS One, 2022, 17(4): e0260282. |
[70] |
Sun CW, Dong ZD, Zhao L, Ren Y, Zhang N, Chen F. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18(6): 1354-1360.
doi: 10.1111/pbi.13361 pmid: 32065714 |
[71] | Foster JT, Beckstrom-Sternberg SM, Pearson T, Beckstrom-Sternberg JS, Chain PSG, Roberto FF, Hnath J, Brettin T, Keim P. Whole-genome-based phylogeny and divergence of the genus Brucella. J Bacteriol, 2009, 191(8): 2864-2870. |
[72] | Choi S, Jin GD, Park J, You I, Kim EB. Pan-genomics of Lactobacillus plantarum revealed group-specific genomic profiles without habitat association. J Microbiol Biotechnol, 2018, 28(8): 1352-1359. |
[73] |
Hahn MW, Koll U, Jezberová J, Camacho A. Global phylogeography of pelagic polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance and influence of climate. Environ Microbiol, 2015, 17(3): 829-840.
doi: 10.1111/1462-2920.12532 pmid: 24920455 |
[1] | Chaofei Han, Ling Chen, Yuanxiu Wang, Qian Cheng, Sheng Zuo, Huabin Liu, Chengliang Wang. Mining and analysis of key genes related to rice seed longevity in NJ9108 based on transcriptomics [J]. Hereditas(Beijing), 2025, 47(3): 351-365. |
[2] | Yulan Lu, Guozhuang Li, Yaqiong Wang, Kexin Xu, Xinran Dong, Jihao Cai, Bingbing Wu, Huijun Wang, Ping Fang, Jian Wang, Hua Wang, Luming Sun, Yongyu Ye, Qing Li, Yaping Liu, Li Liu, Ning Liu, Jiaqi Liu, Fang Song, Lin Yang, Zhengqing Qiu, Zefu Chen, Huaxia Luo, Dan Guo, Chanjuan Hao, Sen Zhao, Shangzhi Huang, Jing Peng, Xiaoqiang Cai, Ruifang Sui, Linkang Li, Nan Wu, Wenhao Zhou, Shuyang Zhang. Expert consensus on clinical genome sequencing interpretation and reporting [J]. Hereditas(Beijing), 2025, 47(3): 314-328. |
[3] | Jieyu Shen, Tianhan Su, Daqi Yu, Shengjun Tan, Yong E. Zhang. Evolution by gene duplication: in the era of genomics [J]. Hereditas(Beijing), 2025, 47(2): 147-171. |
[4] | Hong Wu, Yuxing Zhang, Li Yu. Progress on animal speciation studies [J]. Hereditas(Beijing), 2025, 47(1): 58-70. |
[5] | Wanjing Ping, Jiayang Xue, Qiaomei Fu. Ancient DNA elucidates the migration and evolutionary history of northern and southern populations in East Asia [J]. Hereditas(Beijing), 2025, 47(1): 18-33. |
[6] | Yanchun Bao, Caixia Shi, Chuanqiang Zhang, Mingjuan Gu, Lin Zhu, Zaixia Liu, Le Zhou, Fengying Ma, Risu Na, Wenguang Zhang. Progress on deep learning in genomics [J]. Hereditas(Beijing), 2024, 46(9): 701-715. |
[7] | Henglei Tang, Shutao Zheng, You Li, Wangtao Zhong. Research progress on genetics in cardioembolic stroke [J]. Hereditas(Beijing), 2024, 46(5): 373-386. |
[8] | Ao Zhang, Shan Cen, Xiaoyu Li. N6-adenosine methylation and the regulatory mechanism on LINE-1 [J]. Hereditas(Beijing), 2024, 46(3): 209-218. |
[9] | Heng Wei, Tianpeng Liu, Jihong He, Kongjun Dong, Ruiyu Ren, Lei Zhang, Yawei Li, Ziyi Hao, Tianyu Yang. Genome-wide identification of GRF transcription factors and their expression profile in stem meristem of broomcorn millet (Panicum miliaceum L.) [J]. Hereditas(Beijing), 2024, 46(3): 242-255. |
[10] | Yucheng Liu, Yanting Shen, Zhixi Tian. Frontiers of soybean pan-genome studies [J]. Hereditas(Beijing), 2024, 46(3): 183-198. |
[11] | Huiyi Zheng, Huaxuan Wu, Zhiqiang Du. Gut metagenome-derived image augmentation and deep learning improve prediction accuracy of metabolic disease classification [J]. Hereditas(Beijing), 2024, 46(10): 886-896. |
[12] | Xin Wen, Jin Mei, Meiyu Qian, Yidan Jiang, Juan Wang, Shibo Xu, Cuizhe Wang, Jun Zhang. Screening and analysis of GULP1 downstream target genes based on transcriptomic sequencing [J]. Hereditas(Beijing), 2024, 46(10): 860-870. |
[13] | Xiaopeng Xu, Xiaoying Fan. Research progress on single-cell expression quantitative trait loci [J]. Hereditas(Beijing), 2024, 46(10): 795-806. |
[14] | Yu Liang, Wei Wu. Advances in high throughput sequencing methods for DNA damage and repair [J]. Hereditas(Beijing), 2024, 46(10): 779-794. |
[15] | Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang. Revelation of rice molecular design breeding: the blend of tradition and modernity [J]. Hereditas(Beijing), 2023, 45(9): 718-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号