[1] | Bai DP, Yang MM, Qu L, Chen YL . Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology, 2017,93:1-6. | [2] | Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS . Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene, 2003,22(38):5967-5975. | [3] | Doudna JA, Charpentier E. Genome editing . The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096. [DOI] | [4] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [5] | Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC . Making designer mutants in model organisms. Development, 2014,141(21):4042-4054. | [6] | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL . Corrigendum: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2016,34(2):210. [DOI] | [7] | He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B . Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res, 2016,44(9):e85. [DOI] | [8] | Auer TO, Duroure K, De Cian A, Concordet JP, Del BF . Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 2014,24(1):142-153. | [9] | Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T . MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc, 2016,11(1):118-133. | [10] | Meyer M, de Angelis MH, Wurst W, Kuhn R . Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA, 2010,107(34):15022-15026. | [11] | Heyer WD, Ehmsen K T, Liu J . Regulation of homologous recombination in eukaryotes. Annu Rev Genet, 2010,44:113-139. | [12] | Valerie K, Povirk LF . Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 2003,22(37):5792-5812. | [13] | Alshareeda AT, Negm OH, Albarakati N, Green AR, Nolan C, Sultana R, Madhusudan S, Benhasouna A, Tighe P, Ellis IO, Rakha EA . Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat, 2013,139(2):301-310. | [14] | Britton S, Coates J, Jackson SP . A new method for high- resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol, 2013,202(3):579-595. |
|
[1] |
Yuxuan Guo, Shunping Yan, Yingxiang Wang.
Recent advances in functional conservation and divergence of recombinase RAD51 and DMC1
[J]. Hereditas(Beijing), 2022, 44(5): 398-413.
|
[2] |
Kexue Ma, Rui Li, Fangying Guo, Gege Song, Meng Wu, Guangwen Chen, Dezeng Liu.
Functional analysis of autophagy-related gene Atg6 in planarian central nervous system regeneration
[J]. Hereditas(Beijing), 2021, 43(8): 792-801.
|
[3] |
Xining Geng, Te Lu, Kang Du, Jun Yang, Xiangyang Kang.
Variation of homologous recombination in Populus tomentosa with different genotypes
[J]. Hereditas(Beijing), 2021, 43(2): 182-193.
|
[4] |
Yakun Song,Min Zhang,Qiaochu Wang,Yuli Peng,Fangxing Jia,Chunhong Yu.
Laboratory design and practice for undergraduates: Using RNAi to modulate gene expression
[J]. Hereditas(Beijing), 2019, 41(7): 653-661.
|
[5] |
Fan Li, Rongpei Yu, Dan Sun, Jihua Wang, Shenchong Li, Jiwei Ruan, Qinli Shan, Pingli Lu, Guoxian Wang.
Molecular mechanisms of meiotic recombination suppression in plants
[J]. Hereditas(Beijing), 2019, 41(1): 52-65.
|
[6] |
Caijiao Liang, Fanmei Meng, Yuncan Ai.
CRISPR/Cas systems in genome engineering of bacteriophages
[J]. Hereditas(Beijing), 2018, 40(5): 378-389.
|
[7] |
Chunxia Liu, Lizhao Geng, Jianping Xu.
Detection methods of genome editing in plants
[J]. Hereditas(Beijing), 2018, 40(12): 1075-1091.
|
[8] |
Min Huang,Yeran Yang,Xiaoyan Sun,Ting Zhang,Caixia Guo.
RAD51 regulates REV1 recruitment to DNA double-strand break sites
[J]. Hereditas(Beijing), 2018, 40(11): 1007-1014.
|
[9] |
Yan He,Mengnv Xie,Li Yu,Zhen Ren,Fang Zhu,Chun Fu.
The roles of Fanconi anemia genes in the regulation of follicle development
[J]. Hereditas(Beijing), 2017, 39(6): 469-481.
|
[10] |
Guoling Li,Cuili Zhong,Jianxin Mo,Rong Quan,Zhenfang Wu,Zicong Li,Huaqiang Yang,Xianwei Zhang.
Advances in site-specific integration of transgene in animal genome
[J]. Hereditas(Beijing), 2017, 39(2): 98-109.
|
[11] |
Wei Wang, Yushuang Wang, Lanlan Huang, Zijian Jian, Xinhua Wang, Shouren Liu, Wenhui Pi.
Increasing the efficiency of homologous recombination vector-mediated end joining repair by inhibition of Lig4 gene using siRNA in sheep embryo fibroblasts
[J]. Hereditas(Beijing), 2016, 38(9): 831-839.
|
[12] |
Xianwei Yang, Ruifu Yang, Yujun Cui.
Homologous recombination among bacterial genomes: the measurement and identification
[J]. HEREDITAS(Beijing), 2016, 38(2): 137-143.
|
[13] |
Lijuan Yin, Siqi Hu, Fei Guo.
The application of CRISPR-Cas9 gene editing technology in viral infection diseases
[J]. HEREDITAS(Beijing), 2015, 37(5): 412-418.
|
[14] |
Xiaoli Wang,Chuang Jiang,Jianhua Liu,Xipeng Liu.
An efficient genetic knockout system based on linear DNA fragment homologous recombination for halophilic archaea
[J]. HEREDITAS(Beijing), 2015, 37(4): 388-395.
|
[15] |
Min Bai, Qi Li, Yanjiao Shao, Yuanhua Huang, Dali Li, Yanlin Ma.
Generation of site-specific mutant mice using the CRISPR/Cas9 system
[J]. HEREDITAS(Beijing), 2015, 37(10): 1029-1035.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|