[1] | You ZS , Shi LZ , Zhu Q , Wu P , Zhang YW , Basilio A , Tonnu N , Verma IM , Berns MW , Hunter T. CtIP links DNA double-strand break sensing to resection. Mol Cell, 2009, 36( 6): 954- 969. | [2] | Frit P , Barboule N , Yuan Y , Gomez D , Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair, 2014, 17: 81- 97. | [3] | Valerie K , Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 2003, 22( 37): 5792- 5812. | [4] | Alshareeda AT , Negm OH , Albarakati N , Green AR , Nolan C , Sultana R , Madhusudan S , Benhasouna A , Tighe P , Ellis IO , Rakha EA. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat, 2013, 139( 2): 301- 310. | [5] | Britton S , Coates J , Jackson SP. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol, 2013, 202( 3): 579- 595. | [6] | Gottlieb TM , Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 1993, 72( 1): 131- 142. | [7] | Ma YM , Pannicke U , Schwarz K , Lieber MR. Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell, 2002, 108( 6): 781- 794. | [8] | Burma S , Chen BPC , Chen DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair, 2006, 5( 9-10): 1042- 1048. | [9] | Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010, 79( 1): 181- 211. | [10] | Wu PY , Frit P , Meesala S , Dauvillier S , Modesti M , Andres SN , Huang Y , Sekiguchi J , Calsou P , Salles B , Junop MS. Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Mol Cell Mol Biol, 2009, 29( 11): 3163- 3172. | [11] | Hammel M , Rey M , Yu YP , Mani RS , Classen S , Liu MN , Pique ME , Fang SJ , Mahaney BL , Weinfeld M , Schriemer DC , Lees-Miller SP , Tainer JA. XRCC4 protein interactions XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 2011, 286( 37): 32638- 32650. | [12] | Williams RS , Dodson GE , Limbo O , Yamada Y , Williams JS , Guenther G , Classen S , Glover JNM , Iwasaki H , Russell P , Tainer JA. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell, 2009, 139( 1): 87- 99. | [13] | Cruz-García A , López-Saavedra A , Huertas P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep, 2014, 9( 2): 451- 459. |
[1] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[2] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[3] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[4] |
Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He.
Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis
[J]. Hereditas(Beijing), 2022, 44(7): 581-590.
|
[5] |
Yao Liu, Xianhui Zhou, Shuhong Huang, Xiaolong Wang.
Prime editing: a search and replace tool with versatile base changes
[J]. Hereditas(Beijing), 2022, 44(11): 993-1008.
|
[6] |
Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni.
The cutting edge of gene regulation approaches in model organism Drosophila
[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
|
[7] |
Guangwu Yang, Yuan Tian.
The F-box gene Ppa promotes lipid storage in Drosophila
[J]. Hereditas(Beijing), 2021, 43(6): 615-622.
|
[8] |
Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He.
Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs
[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
|
[9] |
Na Wang, Zhilian Jia, Qiang Wu.
RFX5 regulates gene expression of the Pcdhα cluster
[J]. Hereditas(Beijing), 2020, 42(8): 760-774.
|
[10] |
Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang.
Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals
[J]. Hereditas(Beijing), 2020, 42(7): 641-656.
|
[11] |
Yingnan Chen, Jing Lu.
Application of CRISPR/Cas9 mediated gene editing in trees
[J]. Hereditas(Beijing), 2020, 42(7): 657-668.
|
[12] |
Siyuan Liu, Guoqiang Yi, Zhonglin Tang, Bin Chen.
Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements
[J]. Hereditas(Beijing), 2020, 42(5): 435-443.
|
[13] |
Liwen Bao, Yiye Zhou, Fanyi Zeng.
Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2020, 42(10): 949-964.
|
[14] |
Minting Lin, Lulu Lai, Miao Zhao, Biwei Lin, Xiangping Yao.
Construction of a striatum-specific Slc20a2 gene knockout mice model by CRISPR/Cas9 AAV system
[J]. Hereditas(Beijing), 2020, 42(10): 1017-1027.
|
[15] |
Peifeng Liu, Qiang Wu.
Probing 3D genome by CRISPR/Cas9
[J]. Hereditas(Beijing), 2020, 42(1): 18-31.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|