[1] | Bergh O, Børsheim KY, Bratbak G, Heldal M . High abundance of viruses found in aquatic environments. Nature, 1989,340(6233):467-468. | [2] | Danovaro R , Dell'Anno A, Trucco A, Serresi M, Vanucci S. Determination of virus abundance in marine sediments. Appl Environ Microbiol, 2001,67(3):1384-1387. | [3] | Williamson KE, Radosevich M, Wommack KE . Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol, 2005,71(6):3119-3125. | [4] | Rohwer F . Global phage diversity. Cell, 2003,113(2):141. | [5] | Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF . Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife, 2015,4:e06416. | [6] | Grissa I, Vergnaud G, Pourcel C . The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007,8(1):172. | [7] | Seed KD, Lazinski DW, Calderwood SB, Camilli A . A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 2013,494(7438):489-491. | [8] | Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA , Van Der Oost J, Backofen R, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015,13(11):722-736. | [9] | Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV . Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol, 2017,15(3):169-182. | [10] | Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao YJ, Pirzada ZA, Eckert MR, Vogel, Charpentier E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011,471(7340):602-607. | [11] | Walker FC, Chou-Zheng L, Dunkle JA, Hatoum-Aslan A . Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Nucleic Acids Res, 2017,45(4):2112-2123. | [12] | Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R . CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 2015,520(7548):505-510. | [13] | Wang JY, Li JZ, Zhao HT, Sheng G, Wang M, Yin ML, Wang YL . Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015,163(4):840-853. | [14] | Nuñez JK, Lee ASY, Engelman A, Doudna JA . Integrase- mediated spacer acqu |
[1] |
Xiaoping Lian, Guangfu Huang, Yujiao Zhang, Jing Zhang, Fengyi Hu, Shilai Zhang.
The discovery and utilization of favorable genes in Oryza longistaminata
[J]. Hereditas(Beijing), 2023, 45(9): 765-780.
|
[2] |
Zhongsheng Wu, Yu Gao, Yongtao Du, Song Dang, Kangmin He.
The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing
[J]. Hereditas(Beijing), 2023, 45(2): 165-175.
|
[3] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[4] |
Yuxuan Guo, Shunping Yan, Yingxiang Wang.
Recent advances in functional conservation and divergence of recombinase RAD51 and DMC1
[J]. Hereditas(Beijing), 2022, 44(5): 398-413.
|
[5] |
Haitao Wang, Tingting Li, Xun Huang, Runlin Ma, Qiuyue Liu.
Application of genetic modification technologies in molecular design breeding of sheep
[J]. Hereditas(Beijing), 2021, 43(6): 580-600.
|
[6] |
Xining Geng, Te Lu, Kang Du, Jun Yang, Xiangyang Kang.
Variation of homologous recombination in Populus tomentosa with different genotypes
[J]. Hereditas(Beijing), 2021, 43(2): 182-193.
|
[7] |
Xia Li, Wan Shi, Lizhao Geng, Jianping Xu.
Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes
[J]. Hereditas(Beijing), 2020, 42(6): 556-564.
|
[8] |
Ruiying Qin, Pengcheng Wei.
Prime editing creates a novel dimension of plant precise genome editing
[J]. Hereditas(Beijing), 2020, 42(6): 519-523.
|
[9] |
Xinping Yang,Yuan Yu,Cao Xu.
De novo domestication to create new crops
[J]. Hereditas(Beijing), 2019, 41(9): 827-835.
|
[10] |
Jue Wang, Juan Huang, Rui Xu.
Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies
[J]. Hereditas(Beijing), 2019, 41(5): 422-429.
|
[11] |
Fan Li, Rongpei Yu, Dan Sun, Jihua Wang, Shenchong Li, Jiwei Ruan, Qinli Shan, Pingli Lu, Guoxian Wang.
Molecular mechanisms of meiotic recombination suppression in plants
[J]. Hereditas(Beijing), 2019, 41(1): 52-65.
|
[12] |
Quan Rong, Li Guoling, Mo Jianxin, Zhong Cuili, Li Zicong, Gu Ting, Zheng Enqin, Liu Dewu, Cai Gengyuan, Wu Zhenfang, Zhang Xianwei.
Effects of RNA interference on the porcine NHEJ pathway repair factors on HR efficiency
[J]. Hereditas(Beijing), 2018, 40(9): 749-757.
|
[13] |
Yaoqiang Huang,Guoling Li,Huaqiang Yang,Zhenfang Wu.
Progress and application of genome-edited pigs in biomedical research
[J]. Hereditas(Beijing), 2018, 40(8): 632-646.
|
[14] |
Xiaoling Tong,Chunyan Fang,Tingting Gai,Jin Shi,Cheng Lu,Fangyin Dai.
Applications of the CRISPR/Cas9 system in insects
[J]. Hereditas(Beijing), 2018, 40(4): 266-278.
|
[15] |
Jiawei Liu,Tao Hong,Xin Qin,Yingmin Liang,Ping Zhang.
Recent advance on genome editing for therapy of β-hemoglobinopathies
[J]. Hereditas(Beijing), 2018, 40(2): 95-103.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|