Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (6): 524-535.doi: 10.16288/j.yczz.19-309
• Review • Previous Articles Next Articles
Yanan Zhong, Changmin Niu, Mengmeng Xia, Ying Zheng
Received:
2019-12-25
Revised:
2020-04-02
Online:
2020-06-20
Published:
2020-05-07
Supported by:
Yanan Zhong, Changmin Niu, Mengmeng Xia, Ying Zheng. Research progress of proteins related to sperm tail development[J]. Hereditas(Beijing), 2020, 42(6): 524-535.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Proteins related to sperm tail development"
精子尾部结构 | 发育相关蛋白 |
---|---|
植入窝和基底板 | SUN5和OAZ3 |
小头和节柱 | SPATA6 |
中心体 | SPATC1L、CEP135、CFAP43和CFAP44 |
Manchette | STK33、KIF3A、LRGUK1、SEPT12和MEIG1 |
轴丝 | CFAP69、SPEF2、ARMC2、TCTE1、RSPH6A、DNAH1、DNAH2、C11orf70和PIH1D3 |
外周致密纤维 | ODF1、ODF2、ODF3、Tssk4和MNS1 |
线粒体鞘 | KLC3、MFN2和CFAP251 |
纤维鞘 | FSIP2、AKAP4、AKAP3、ROPN1、ROPN1L、FS39、Als2cr12、Mtsga10、ENO4和CFAP157 |
[1] | Eddy EM . The scaffold role of the fibrous sheath. Soc Reprod Fertil Suppl, 2007,65:45-62. |
[2] | Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G . Septins at the annulus of mammalian sperm. Biol Chem, 2011,392(8-9):799-803. |
[3] | Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H . The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell, 2005,8(3):353-364. |
[4] | Lin YH, Lin YM, Wang YY, Yu IS, Lin YW, Wang YH, Wu CM, Pan HA, Chao SC, Yen PH, Lin SW, Kuo PL . The expression level of septin12 is critical for spermiogenesis. Am J Pathol, 2009,174(5):1857-1868. |
[5] | Yassine S, Escoffier J, Abi Nahed R, Pierre V, Karaouzene T, Ray PF, Arnoult C . Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knock-out mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope. PLoS One, 2015,10(3):e0118698. |
[6] | Shang YL, Zhu FX, Wang LN, Ouyang YC, Dong MZ, Liu C, Zhao HC, Cui XH, Ma DY, Zhang ZG, Yang XY, Guo YS, Liu F, Yuan L, Gao F, Guo XJ, Sun QY, Cao YX, Li W . Essential role for SUN5 in anchoring sperm head to the tail. eLife, 2017,6:e28199. |
[7] | Tokuhiro K, Isotani A, Yokota S, Yano Y, Oshio S, Hirose M, Wada M, Fujita K, Ogawa Y, Okabe M, Nishimune Y, Tanaka H . OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet, 2009,5(11):e1000712. |
[8] | Yuan SQ, Stratton CJ, Bao JQ, Zheng HL, Bhetwal BP, Yanagimachi R, Yan W . Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci USA, 2015,112(5):E430-E439. |
[9] | Baek N, Woo JM, Han C, Choi E, Park I, Kim DH, Eddy EM, Cho C . Characterization of eight novel proteins with male germ cell-specific expression in mouse. Reprod Biol Endocrinol, 2008,6:32. |
[10] | Kim J, Kwon JT, Jeong J, Kim J, Hong SH, Kim J, Park ZY, Chung KH, Eddy EM, Cho C . SPATC1L maintains the integrity of the sperm head-tail junction. EMBO Rep, 2018,19(9):e45991. |
[11] | Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, Alef T, Hennies HC, Technau M, Altmuller J, Frommolt P, Thiele H, Noegel AA, Nurnberg P . A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet, 2012,90(5):871-878. |
[12] | Sha YW, Xu XH, Mei LB, Li P, Su ZY, He XQ, Li L . A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene, 2017,633:48-53. |
[13] | Sha YW, Wang X, Xu X, Su ZY, Cui Y, Mei LB, Huang XJ, Chen J, He XM, Ji ZY, Bao H, Yang X, Li P, Li L . Novel mutations in CFAP44 and CFAP43 cause multiple morphological abnormalities of the sperm flagella (MMAF). Reprod Sci, 2019,26(1):26-34. |
[14] | Lehti MS, Sironen A . Formation and function of the manchette and flagellum during spermatogenesis. Reproduction, 2016,151(4):R43-R54. |
[15] | Martins LR, Bung RK, Koch S, Richter K, Schwarzmüller L, Terhardt D, Kurtulmus B, Niehrs C, Rouhi A, Lohmann I, Pereira G, Frohling S, Glimm H, Scholl C . Stk33 is required for spermatid differentiation and male fertility in mice. Dev Biol, 2018,433(1):84-93. |
[16] | Rosenbaum JL, Witman GB . Intraflagellar transport. Nat Rev Mol Cell Biol, 2002,3(11):813-25. |
[17] | Lehti MS, Kotaja N, Sironen A . KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol, 2013,377(1-2):44-55. |
[18] | Okuda H, DeBoer K, O'Connor AE, Merriner DJ, Jamsai D, O'Bryan MK. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility. FASEB J, 2017,31(3):1141-1152. |
[19] | Kuo PL, Chiang HS, Wang YY, Kuo YC, Chen MF, Yu IS, Teng YN, Lin SW, Lin YH . SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci, 2013,14(11):22102-22116. |
[20] | Zhang Z, Shen X, Gude DR, Wilkinson BM, Justice MJ, Flickinger CJ, Herr JC, Eddy EM, Strauss JF . MEIG1 is essential for spermiogenesis in mice. Proc Natl Acad Sci USA, 2009,106(40):17055-17060. |
[21] | Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L, Lores P, Karaouzene T, Thierry-Mieg N, Satre V, Brouillet S, Daneshipour A, Hosseini SH, Bonhivers M, Gourabi H, Dulioust E, Arnoult C, Toure A, Ray PF, Zhao H, Coutton C . Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse. Am J Hum Genet, 2018,102(4):636-648. |
[22] | Liu CY, Lv MR, He XJ, Zhu Y, Amiri-Yekta A, Li WY, Wu H, Kherraf ZE, Liu WJ, Zhang JJ, Tan Q, Tang SY, Zhu YJ, Zhong YD, Li CH, Tian SX, Zhang ZG, Jin L, Ray P, Zhang F, Cao YX . Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet, 2020,57(1):31-37. |
[23] | Sironen A, Hansen J, Thomsen B, Andersson M, Vilkki J, Toppari J, Kotaja N . Expression of SPEF2 during mouse spermatogenesis and identification of IFT20 as an interacting protein. Biol Reprod, 2010,82(3):580-590. |
[24] | Coutton C, Martinez G, Kherraf ZE, Amiri-Yekta A, Boguenet M, Saut A, He X, Zhang F, Cristou-Kent M, Escoffier J, Bidart M, Satre V, Conne B, Fourati Ben Mustapha S, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Pernet-Gallay K, Bonhivers M, Hennebicq S, Rives N, Dulioust E, Toure A, Gourabi H, Cao Y, Zouari R, Hosseini SH, Nef S, Thierry-Mieg N, Arnoult C, Ray PF . Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet, 2019,104(2):331-340. |
[25] | Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF . Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken), 2016,73(1):3-22. |
[26] | Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME . The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell, 2013,24(8):1134-1152. |
[27] | Castaneda JM, Hua R, Miyata H, Oji A, Guo YS, Cheng YW, Zhou T, Guo XJ, Cui YQ, Shen B, Wang ZB, Hu ZB, Zhou ZM, Sha JH, Prunskaite-Hyyrylainen R, Yu ZF, Ramirez-Solis R, Ikawa M, Matzuk MM, Liu MX . TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci USA, 2017,114(27):E5370-E5378. |
[28] | Abbasi F, Miyata H, Shimada K, Morohoshi A, Nozawa K, Matsumura T, Xu Z, Pratiwi P, Ikawa M . RSPH6A is required for sperm flagellum formation and male fertility in mice. J Cell Sci, 2018,131(19). |
[29] | Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, Duquesnoy P, Piterboth W, Amram D, Bassinet L, Beucher J, Beydon N, Deneuville E, Houdouin V, Journel H, Just J, Nathan N, Tamalet A, Collot N, Jeanson L, Le Gouez M, Vallette B, Vojtek AM, Epaud R, Coste A, Clement A, Housset B, Louis B, Escudier E, Amselem S. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial- spoke defects. Am J Hum Genet, 2013,93(3):561-570. |
[30] | Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J, Hennebicq S, Grunwald D, Escalier D, Pernet-Gallay K, Jouk PS, Thierry-Mieg N, Touré A, Arnoult C, Ray PF . Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet, 2014,94(1):95-104. |
[31] | Li Y, Sha YW, Wang X, Ding L, Liu WS, Ji ZY, Mei LB, Huang XJ, Lin SB, Kong SB, Lu JH, Qin WB, Zhang XZ, Zhuang JM, Tang YG, Lu ZX . DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet, 2019,95(5):590-600. |
[32] | Höben IM, Hjeij R, Olbrich H, Dougherty GW, Nothe- Menchen T, Aprea I, Frank D, Pennekamp P, Dworniczak B, Wallmeier J, Raidt J, Nielsen KG, Philipsen MC, Santamaria F, Venditto L, Amirav I, Mussaffi H, Prenzel F, Wu K, Bakey Z, Schmidts M, Loges NT, Omran H . Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of Left/Right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet, 2018,102(5):973-984. |
[33] | Dong F, Shinohara K, Botilde Y, Nabeshima R, Asai Y, Fukumoto A, Hasegawa T, Matsuo M, Takeda H, Shiratori H, Nakamura T, Hamada H . Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol, 2014,204(2):203-213. |
[34] | Gastmann O, Burfeind P, Günther E, Hameister H, Szpirer C, Hoyer-Fender S . Sequence, expression, and chromosomal assignment of a human sperm outer dense fiber gene. Mol Reprod Dev, 1993,36(4):407-418. |
[35] | Shao X, Murthy S, Demetrick DJ, van der Hoorn FA . Human outer dense fiber gene, ODF2, localizes to chromosome 9q34. Cytogenet Cell Genet, 1998,83(3-4):221-223. |
[36] | Petersen C, Aumüller G, Bahrami M, Hoyer-Fender S . Molecular cloning of Odf3 encoding a novel coiled-coil protein of sperm tail outer dense fibers. Mol Reprod Dev, 2002,61(1):102-112. |
[37] | Wei Y, Wang X, Fu G, Yu L . Testis specific serine/threonine kinase 4 (Tssk4) maintains its kinase activity by phosphorylating itself at Thr-197. Mol Biol Rep, 2013,40(1):439-447. |
[38] | Wang X, Wei Y, Fu G, Li H, Saiyin H, Lin G, Wang Z, Chen S, Yu L . Tssk4 is essential for maintaining the structural integrity of sperm flagellum. Mol Hum Reprod, 2015,21(2):136-145. |
[39] | Zhou J, Yang F, Leu NA, Wang PJ . MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet, 2012,8(3):e1002516. |
[40] | Hirokawa N, Nitta R, Okada Y . The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol, 2009,10(12):877-884. |
[41] | Zhang Y, Ou Y, Cheng M, Saadi HS, Thundathil JC, van der Hoorn FA, . KLC3 is involved in sperm tail midpiece formation and sperm function. Dev Biol, 2012,366(2):101-110. |
[42] | Bhullar B, Zhang Y, Junco A, Oko R, van der Hoorn FA, . Association of kinesin light chain with outer dense fibers in a microtubule-independent fashion. J Biol Chem, 2003,278(18):16159-16168. |
[43] | Zhang Y, Oko R, van der Hoorn FA . Rat kinesin light chain 3 associates with spermatid mitochondria. Dev Biol, 2004,275(1):23-33. |
[44] | Vadnais ML, Lin AM, Gerton GL . Mitochondrial fusion protein MFN2 interacts with the mitostatin-related protein MNS1 required for mouse sperm flagellar structure and function. Cilia, 2014,3:5. |
[45] | Li WY, He XJ, Yang SM, Liu CY, Wu H, Liu WJ, Lv MR, Tang DD, Tan J, Tang SY, Chen YJ, Wang JJ, Zhang ZG, Wang HY, Jin L, Zhang F, Cao YX . Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. J Hum Genet, 2019,64(1):49-54. |
[46] | Liu W, Wu H, Wang L, Yang X, Liu C, He X, Li W, Wang J, Chen Y, Wang H, Gao Y, Tang S, Yang S, Jin L, Zhang F, Cao Y . Homozygous loss-of-function mutations in FSIP2 cause male infertility with asthenoteratospermia. J Genet Genomics, 2019,46(1):53-56. |
[47] | Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW . Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol Reprod, 2013,88(2):41. |
[48] | Newell AE, Fiedler SE, Ruan JM, Pan J, Wang PJ, Deininger J, Corless CL, Carr DW . Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction. Cell Motil Cytoskeleton, 2008,65(7):539-552. |
[49] | Catalano RD, Hillhouse EW, Vlad M . Developmental expression and characterization of FS39, a testis complementary DNA encoding an intermediate filament-related protein of the sperm fibrous sheath. Biol Reprod, 2001,65(1):277-287. |
[50] | Choi E, Cho C . Expression of a sperm flagellum component encoded by the Als2cr12 gene. Gene Expr Patterns, 2011,11(5-6):327-333. |
[51] | Modarressi MH, Behnam B, Cheng M, Taylor KE, Wolfe J, van der Hoorn FA . Tsga10 encodes a 65-kilodalton protein that is processed to the 27-kilodalton fibrous sheath protein. Biol Reprod, 2004,70(3):608-615. |
[52] | Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T . Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J, 2000,19(17):4449-4462. |
[53] | Nakamura N, Dai QS, Williams J, Goulding EH, Willis WD, Brown PR, Eddy EM . Disruption of a spermatogenic cell-specific mouse enolase 4 (eno4) gene causes sperm structural defects and male infertility. Biol Reprod, 2013,88(4):90. |
[54] | Hoppeler-Lebel A, Celati C, Bellett G, Mogensen MM, Klein-Hitpass L, Bornens M, Tassin AM . Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci, 2007,120(Pt 18):3299-3308. |
[55] | Weidemann M, Schuster-Gossler K, Stauber M, Wrede C, Hegermann J, Ott T, Boldt K, Beyer T, Serth K, Kremmer E, Blum M, Ueffing M, Gossler A . CFAP157 is a murine downstream effector of FOXJ1 that is specifically required for flagellum morphogenesis and sperm motility. Development, 2016,143(24):4736-4748. |
[56] | Krausz C, Escamilla AR, Chianese C . Genetics of male infertility: from research to clinic. Reproduction, 2015,150(5):R159-R174. |
[57] | Ruan J, Du WD . Male infertility and gene defects. Hereditas(Beijing), 2010,32(5):411-422. |
阮健, 杜卫东 . 男性不育与基因缺陷. 遗传, 2010,32(5):411-422. |
[1] | Luyan Tian, Xiaozhen Huang. Application value of protein phase separation mechanism of flowering regulation in de novo domestication [J]. Hereditas(Beijing), 2023, 45(9): 754-764. |
[2] | Weize Kong, Yishi Liu, Xiaodong Gao, Morihisa Fujita. Comprehensive in silico analysis of glycosylphosphatidylinositol- anchored protein (GPI-AP) related genes expression profiles in human normal and cancer tissues [J]. Hereditas(Beijing), 2023, 45(8): 669-683. |
[3] | Shan He, Jian Zhao, Xiaofeng Song. Effects of N6-methyladenosine modification on the function of the female reproductive system [J]. Hereditas(Beijing), 2023, 45(6): 472-487. |
[4] | Feifei Li, Yanmin Hao, Minlong Cui, Chunlan Piao. Cloning and functional analysis of RADIALIS-like 1 gene from Antirrhinum majus [J]. Hereditas(Beijing), 2023, 45(6): 526-535. |
[5] | Chaofan Xing, Mintao Wang, Lei Wang, Xin Shen. Progress on the mechanism of left-right asymmetrical patterning in bilaterians [J]. Hereditas(Beijing), 2023, 45(6): 488-500. |
[6] | Zhihui Gao, Jiaxin Huang, Haoyu Luo, Haidong Xu, Ming Lou, Bolin Ning, Xiaoxu Xing, Fang Mu, Hui Li, Ning Wang. Characterization of the genomic and transcriptional structure of chicken NRG4 gene [J]. Hereditas(Beijing), 2023, 45(5): 447-458. |
[7] | Chengxian Wang, Yikang S. Rong, Min Cui. The molecular mechanism of Drosophila restricting telomeric transposons [J]. Hereditas(Beijing), 2023, 45(3): 221-228. |
[8] | Qian Zhang, Zihao Wang, Ye Tian. Inter-tissue communication of mitochondrial stress in aging [J]. Hereditas(Beijing), 2023, 45(3): 187-197. |
[9] | Zhongsheng Wu, Yu Gao, Yongtao Du, Song Dang, Kangmin He. The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing [J]. Hereditas(Beijing), 2023, 45(2): 165-175. |
[10] | Dandan Wu, Mingkun Zhu, Zhongyan Fang, Wei Ma. Progress on molecular composition and genetic mechanism of plant B chromosomes [J]. Hereditas(Beijing), 2022, 44(9): 772-782. |
[11] | Mengxuan Xu, Ming Zhou. Advances of RNA polymerase IV in controlling DNA methylation and development in plants [J]. Hereditas(Beijing), 2022, 44(7): 567-580. |
[12] | Sinan Luan, Lele Liu, Jiayuan Zhou, Nurasya Imam, Minlong Cui, Chunlan Piao. Functional analysis of flower development related gene SvGLOBOSA from Senecio vulgaris [J]. Hereditas(Beijing), 2022, 44(6): 521-530. |
[13] | Yuan Zhang, Yuting Zhao, Lenan Zhuang, Jin He. Transcriptional regulation of transcriptional Mediator complexes in cardiovascular development and disease [J]. Hereditas(Beijing), 2022, 44(5): 383-397. |
[14] | Mengxiao Wang, Margaret S. Ho. Recent advances on the role of glia in physiological behaviors: insights from Drosophila melanogaster [J]. Hereditas(Beijing), 2022, 44(4): 300-312. |
[15] | Hui Qu, Yi Liu, Yawen Chen, Hui Wang. Alteration of imprinted genes and offspring organ development caused by environmental factors [J]. Hereditas(Beijing), 2022, 44(2): 107-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号