Hereditas(Beijing) ›› 2022, Vol. 44 ›› Issue (12): 1141-1147.doi: 10.16288/j.yczz.22-304
• Research Report • Previous Articles Next Articles
Xingqi Wan1(), Wanzhen Wei1, Shengliang Guo1, Yixiao Cui2, Xueying Jing1, Lujie Huang1(
), Jie Ma1(
)
Received:
2022-09-18
Revised:
2022-10-21
Online:
2022-12-20
Published:
2022-10-31
Contact:
Huang Lujie,Ma Jie
E-mail:1061606776@qq.com;huanglujie307@163.com;majie@xjtu.edu.cn
Supported by:
Xingqi Wan, Wanzhen Wei, Shengliang Guo, Yixiao Cui, Xueying Jing, Lujie Huang, Jie Ma. Functional analysis of the long-range regulatory element of BMP2 gene[J]. Hereditas(Beijing), 2022, 44(12): 1141-1147.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Temtamy SA, Aglan MS. Brachydactyly. Orphanet J Rare Dis, 2008, 3: 15.
doi: 10.1186/1750-1172-3-15 pmid: 18554391 |
[2] | Temtamy SA, Mckusick VA. The genetics of hand malformations. Birth Defects Orig Artic Ser, 1978, 14(3): 1-619. |
[3] | Mohr OL eds.A New Type of Hereditary Brachyphalangy in Man. Wentworth Press, 2019, 5-64. |
[4] |
Lehmann K, Seemann P, Boergermann J, Morin G, Reif S, Knaus P, Mundlos S.A novel R486Q mutation in BMPR1B resulting in either a brachydactyly type c/symphalangism- like phenotype or brachydactyly type A2. Eur J Hum Genet, 2006, 14(12): 1248-1254.
doi: 10.1038/sj.ejhg.5201708 |
[5] |
Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Suring K, Majewski F, Tinschert S, Grzeschik KH, Muller D, Knaus P, Nurnberg P, Mundlos S.Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci USA, 2003, 100(21): 12277-12282.
doi: 10.1073/pnas.2133476100 |
[6] | Bednarek M, Trybus M, Kolanowska M, Koziej M, Kiec-Wilk B, Dobosz A, Kotlarek-Lysakowska M, Kubiak-Dydo A, Uzarowska-Gaska E, Starega-Roslan J, Gaj P, Gorzynska I, Serwan K, Swierniak M, Kot A, Jazdzewski K, Wojcicka A. BMPR1B gene in brachydactyly type 2-A family with de novo R486W mutation and a disease phenotype. Mol Genet Genomic Med, 2021, 9(3): e1594. |
[7] | Dawson K, Seeman P, Sebald E, King L, Edwards M, Williams JR, Mundlos S, Krakow D. 5 is a second locus for multiple-synostosis syndrome. GDF Am J Hum Genet, 2006, 78(4): 708-712. |
[8] |
Kjaer KW, Eiberg H, Hansen L, van der Hagen CB, Rosendahl K, Tommerup N, Mundlos S. A mutation in the receptor binding site of GDF 5 causes Mohr-Wriedt brachydactyly type A2. J Med Genet, 2006, 43(3): 225-231.
pmid: 16014698 |
[9] |
Ploger F, Seemann P, Schmidt-Von KM, Lehmann K, Seidel J, Kjaer KW, Pohl J, Mundlos S. Brachydactyly type A2 associated with a defect in proGDF5 processing. Hum Mol Genet, 2008, 17(9): 1222-1233.
doi: 10.1093/hmg/ddn012 pmid: 18203755 |
[10] |
Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Dawson K, Stricker S, Pohl J, Ploger F, Staub E, Nickel J, Sebald W, Knaus P, Mundlos S. Activating and deactivating mutations in the receptor interaction site of GDF 5 cause symphalangism or brachydactyly type A2. J Clin Invest, 2005, 115(9): 2373-2381.
pmid: 16127465 |
[11] |
Dathe K, Kjaer KW, Brehm A, Meinecke P, Nurnberg P, Neto JC, Brunoni D, Tommerup N, Ott CE, Klopocki E, Seemann P, Mundlos S.Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am J Hum Genet, 2009, 84(4): 483-492.
doi: 10.1016/j.ajhg.2009.03.001 |
[12] |
Su PQ, Ding HK, Huang DS, Zhou Y, Huang WJ, Zhong LY, Vyse TJ, Wang YM. A 4.6 kb genomic duplication on 20p12.2-12.3 is associated with brachydactyly type A 2 in a chinese family. J Med Genet, 2011, 48(5): 312-316.
doi: 10.1136/jmg.2010.084814 |
[13] |
Liu XD, Gao LH, Zhao A, Zhang R, Ji BH, Wang L, Zheng YL, Zeng BF, Valenzuela RK, He L, Ma J. Identification of duplication downstream of BMP2 in a chinese family with brachydactyly type A2 (BDA2). PLoS One, 2014, 9(4): e94201.
doi: 10.1371/journal.pone.0094201 |
[14] |
Wang WB, Jia YC, Zhang Z, Xu J, Zuo RT, Kang QL. A novel duplication downstream of BMP2 in a chinese family with brachydactyly type A2 (BDA2). Gene, 2018, 642: 110-115.
doi: 10.1016/j.gene.2017.11.024 |
[15] |
Lyons KM, Pelton RW, Hogan BL. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development, 1990, 109(4): 833-844.
doi: 10.1242/dev.109.4.833 pmid: 2226202 |
[16] |
Kulessa H, Turk G, Hogan BL. Inhibition of BMP signaling affects growth and differentiation in the anagen hair follicle. EMBO J, 2000, 19(24): 6664-6674.
pmid: 11118201 |
[17] |
Pathi S, Rutenberg JB, Johnson RL, Vortkamp A. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol, 1999, 209(2): 239-253.
pmid: 10328918 |
[18] |
Feng JQ, Xing LP, Zhang JH, Zhao M, Horn D, Chan J, Boyce BF, Harris SE, Mundy GR, Chen D. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J Biol Chem, 2003, 278(31): 29130-29135.
doi: 10.1074/jbc.M212296200 |
[19] |
Feng JQ, Harris MA, Ghosh-Choudhury N, Feng M, Mundy GR, Harris SE. Structure and sequence of mouse bone morphogenetic protein-2 gene (BMP-2): comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim Biophys Acta, 1994, 1218(2): 221-224.
pmid: 8018727 |
[20] |
Feng JQ, Chen D, Ghosh-Choudhury N, Esparza J, Mundy GR, Harris SE. Bone morphogenetic protein 2 transcripts in rapidly developing deer antler tissue contain an extended 5' non-coding region arising from a distal promoter. Biochim Biophys Acta, 1997, 1350(1): 47-52.
pmid: 9003457 |
[21] |
Sugiura T. Cloning and functional characterization of the 5'-flanking region of the human bone morphogenetic protein-2 gene. Biochem J, 1999, 338 (Pt 2): 433-440.
doi: 10.1042/bj3380433 |
[22] |
Chandler RL, Chandler KJ, Mcfarland KA, Mortlock DP. BMP2 transcription in osteoblast progenitors is regulated by a distant 3' enhancer located 156.3 kilobases from the promoter. Mol Cell Biol, 2007, 27(8): 2934-2951.
pmid: 17283059 |
[23] |
Styrkarsdottir U, Cazier JB, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, Johannsdottir VD, Sigurdardottir MS, Bagger Y, Christiansen C, Reynisdottir I, Grant SF, Jonasson K, Frigge ML, Gulcher JR, Sigurdsson G, Stefansson K. Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol, 2003, 1(3): E69.
doi: 10.1371/journal.pbio.0000069 |
[24] |
Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet, 2006, 38(12): 1424-1429.
pmid: 17099713 |
[25] | Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol, 2013, 5(1): a8334. |
[26] |
Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet, 2006, 2(12): e216.
doi: 10.1371/journal.pgen.0020216 pmid: 17194222 |
[27] | Lv ZJ, Wang ZH, Lu SX, Liu PR, Tian J. Brachydactyly and the molecular mechanisms of digit formation. Hereditas(Beijing), 2019, 41(12): 1073-1083. |
吕赵劼, 王志浩, 卢淑娴, 刘沛蓉, 田静. 短指(趾)症及指(趾)骨发育的分子调控机制. 遗传, 2019, 41(12): 1073-1083. |
[1] | Qianwen Lv, Yongfang Yang. The biological functions of peptide signaling in plant and the advances on its utilization for crop improvement [J]. Hereditas(Beijing), 2023, 45(9): 813-828. |
[2] | Shunze Wang, Feng Jiang, Dongli Zhu, Tie-Lin Yang, Yan Guo. Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis [J]. Hereditas(Beijing), 2023, 45(4): 279-294. |
[3] | Qian Zhang, Zihao Wang, Ye Tian. Inter-tissue communication of mitochondrial stress in aging [J]. Hereditas(Beijing), 2023, 45(3): 187-197. |
[4] | Chengxian Wang, Yikang S. Rong, Min Cui. The molecular mechanism of Drosophila restricting telomeric transposons [J]. Hereditas(Beijing), 2023, 45(3): 221-228. |
[5] | Xiangyi Wei, Dongchun Hu, Zupeng Gao, Congjing Feng. JAK/STAT signaling pathway and its regulation on insect immunity [J]. Hereditas(Beijing), 2023, 45(3): 229-236. |
[6] | Jie Ma, Lujie Huang, Qiaoxia Zhang, Yan Zhu, Lu Qian. PBL teaching design of medical genetics with the case of brachydactyly type A2 [J]. Hereditas(Beijing), 2023, 45(2): 176-183. |
[7] | Xiuli Chen, Haiyan Huang, Qiang Wu. Targeted deletion of 5′HS2 enhancer of β-globin locus control region in K562 cells [J]. Hereditas(Beijing), 2022, 44(9): 783-797. |
[8] | Dandan Wu, Mingkun Zhu, Zhongyan Fang, Wei Ma. Progress on molecular composition and genetic mechanism of plant B chromosomes [J]. Hereditas(Beijing), 2022, 44(9): 772-782. |
[9] | Siyuan Xu, Jia Shou, Qiang Wu. Additional evidence of HS5-1 enhancer eRNA PEARL for protocadherin alpha gene regulation [J]. Hereditas(Beijing), 2022, 44(8): 695-764. |
[10] | Yan Hao, Fumin Lei. Genetic mechanism of adaptive evolution: the example of adaptation to high altitudes [J]. Hereditas(Beijing), 2022, 44(8): 635-654. |
[11] | Xichen Luo, Hui Liu, Xueying Liu, Xinxin Li, Hong Liao, Xiangdong Fu. Long distance signal transduction in response to environmental changes in plants [J]. Hereditas(Beijing), 2022, 44(7): 556-566. |
[12] | Yan Zhao, Chenxin Wang, Tianming Yang, Chunshuang Li, Lihong Zhang, Dongni Du, Ruoxi Wang, Jing Wang, Min Wei, Xueqing Ba. Linking oxidative DNA lesion 8-OxoG to tumor development and progression [J]. Hereditas(Beijing), 2022, 44(6): 466-477. |
[13] | Yuan Zhang, Yuting Zhao, Lenan Zhuang, Jin He. Transcriptional regulation of transcriptional Mediator complexes in cardiovascular development and disease [J]. Hereditas(Beijing), 2022, 44(5): 383-397. |
[14] | Sihan Qi, Qilin Wang, Junyou Zhang, Qian Liu, Chunyan Li. The regulatory mechanisms by enhancers during cancer initiation and progression [J]. Hereditas(Beijing), 2022, 44(4): 275-288. |
[15] | Cong Liu, Jiani Feng, Weiwei Li, Weiwei Zhu, Yunxin Xue, Dai Wang, Xilin Zhao. Maintenance of dNTP pool homeostasis and genomic stability [J]. Hereditas(Beijing), 2022, 44(2): 96-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号