Hereditas(Beijing) ›› 2025, Vol. 47 ›› Issue (2): 258-270.doi: 10.16288/j.yczz.24-126
• Review • Previous Articles Next Articles
Received:
2024-05-06
Revised:
2024-06-28
Online:
2025-02-20
Published:
2024-08-13
Contact:
Wei Zhang
E-mail:nijiaxin2020@stu.pku.edu.cn;weizhangvv@pku.edu.cn
Supported by:
Jiaxin Ni, Wei Zhang. Progress and prospects on evolutionary developmental biology of butterfly wing patterns[J]. Hereditas(Beijing), 2025, 47(2): 258-270.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Examples of genetic toolkit genes/loci that determine wing color pattern development in butterflies"
遗传工具包基因/基因座 | 基因描述 | 基因参与决定的表型 |
---|---|---|
cortex | 编码细胞周期调控因子[ | 袖蝶翅颜色与鳞片类型[ 枯叶蛱蝶拟叶多态性[ 斑凤蝶翅黑色、白色和棕色花纹[ 桦尺蠖翅黑色花纹[ 鹿眼蛱蝶翅季节多态性[ |
Dll | 编码同源结构域转录因子[ | 果蝇腿盘发育[ 蝴蝶翅眼斑中心的确立和信号传递[ |
optix | 编码同源结构域转录因子[ | 袖蝶、偏瞳蔽眼蝶、鹿眼蛱蝶、小红蛱蝶和银纹红袖蝶翅红色和橙色花纹[ 鹿眼蛱蝶翅结构色[ 果蝇眼形态建成、眼部色素合成[ |
WntA | 编码形态发生素[ | 袖蝶、小红蛱蝶、鹿眼蛱蝶、偏瞳蔽眼蝶翅黑色素表达范围[ |
wg | 编码形态发生素[ | 在果蝇中调节体节极性、决定翅盘背腹轴分化[ 蝶翅眼斑合成[ 蝶翅形状[ |
[1] | Darwin CR. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray, 1859. |
[2] | Huxley J. Evolution: the Modern Synthesis. London: George Allen and Unwin, 1942. |
[3] |
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 2008, 134(1): 25-36.
doi: 10.1016/j.cell.2008.06.030 pmid: 18614008 |
[4] |
McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell, 1984, 37(2): 403-408.
pmid: 6327065 |
[5] |
Graham A, Papalopulu N, Krumlauf R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell, 1989, 57(3): 367-378.
doi: 10.1016/0092-8674(89)90912-4 pmid: 2566383 |
[6] | Futuyma DJ. Evolution. Sunderland: Sinauer Associates, 2013. |
[7] | Carroll SB. Endless Forms Most Beautiful. New York: W W Norton and Company, 2005. |
[8] |
Wei FW. A new era for evolutionary developmental biology in non-model organisms. Sci China Life Sci, 2020, 63(8): 1251-1253.
doi: 10.1007/s11427-020-1748-0 pmid: 32548692 |
[9] | Schneider I, Amemiya C. Developmental-genetic toolkit for evolutionary developmental biology. In: Kliman RM, eds. Encyclopedia of Evolutionary Biology. Oxford: Academic Press, 2016, 404-408. |
[10] |
Hoekstra HE, Coyne JA. The locus of evolution: evo devo and the genetics of adaptation. Evolution, 2007, 61(5): 995-1016.
doi: 10.1111/j.1558-5646.2007.00105.x pmid: 17492956 |
[11] |
Beldade P, Brakefield PM. The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet, 2002, 3(6): 442-452.
pmid: 12042771 |
[12] | Zhang ZQ, Hooper JNA, Van Soest RWM, Pisera A, Crowther AL, Tyler S, Schilling S, Eschmeyer WN, Fong JD, Blackburn DC, Wake DB, Wilson DE, Reeder DM, Fritz U, Hodda M, Guidetti R, Bertolani R, Mayer G, De Sena Oliveira I, Adrain JM, Bamber RN, Kury AB, Prendini L, Harvey MS, Beaulieu F, Dowling APG, Klompen H, de Moraes GJ, Walter DE, Fan QH, Pešić V, Smit H, Bochkov AV, Khaustov AA, Baker A, Wohltmann A, Wen TH, Amrine JW, Beron P, Lin JZ, Gabrys G, Husband RW, Bolton SJ, Uusitalo M, Schatz H, Behan-Pelletier VM, Oconnor BM, Norton RA, Dunlop JA, Penney D, Minelli A, Shear WA, Ahyong ST, Lowry JK, Alonso M, Boxshall GA, Castro P, Gerken S, Karaman GS, Goy JW, Jones DS, Meland K, Rogers DC, Svavarsson J, Janssens F, Christiansen KA, Ingrisch S, Brock PD, Marshall J, Beccaloni GW, Eggleton P, Mound LA, Slipinski SA, Leschen RAB, Lawrence JF, Holzenthal RW, Morse JC, Kjer KM, van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, Mitter C, Mutanen M, Regier JC, Simonsen TJ, Wahlberg N, Yen SH, Zahiri R, Adamski D, Baixeras J, Bartsch D, Bengtsson BA, Brown JW, Bucheli SR, Davis DR, De Prins J, De Prins W, Epstein ME, Gentili-Poole P, Gielis C, Haettenschwiler P, Hausmann A, Holloway JD, Kallies A, Karsholt O, Kawahara AY, Koster S, Kozlov MV, Lafontaine JD, Lamas G, Landry JF, Lee S, Nuss M, Park KT, Penz C, Rota J, Schintlmeister A, Schmidt BC, Sohn JC, Solis MA, Tarmann GM, Warren AD, Weller S, Yakovlev RV, Zolotuhin VV, Zwick A, Pape T, Blagoderov V, Mostovski MB, Emig CC, Segers HH, Monks S, Richardson DJ. Animal biodiversity: an outline of higher-level classification and taxonomic richness. Zootaxa, 2011, 3148(3148): 7-237. |
[13] |
Parchem RJ, Perry MW, Patel NH. Patterns on the insect wing. Curr Opin Genet Dev, 2007, 17(4): 300-308.
pmid: 17627807 |
[14] |
Nijhout HF. Ontogeny of the color pattern on the wings of Precis coenia (Lepidoptera: Nymphalidae). Dev Biol, 1980, 80(2): 275-288.
pmid: 7192661 |
[15] | Brakefield PM, French V. Butterfly wings: the evolution of development of colour patterns. Bioessays, 1999, 21(5): 391-401. |
[16] |
Otaki JM. Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan. Zoolog Sci, 2012, 29(9): 568-576.
doi: 10.2108/zsj.29.568 pmid: 22943780 |
[17] | Schwanwitsch BN. On the ground-plan of wing-pattern in Nymphalids and certain other Families of the Rhopaloeerous Lepidoptera. Proc Zool Soc London, 1924, 94(2): 509-528. |
[18] | Nijhout HF. The Development and Evolution of Butterfly Wing Patterns. Washngton: Smithsonian Institution Press, 1991. |
[19] | Liu GC, Chang Z, Chen L, He JW, Dong ZW, Yang J, Lu SH, Zhao RP, Wan WT, Ma GL, Li J, Zhang R, Wang W, Li XY. Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Syst Entomol, 2020, 45(3): 571-582. |
[20] |
French V. Pattern formation in colour on butterfly wings. Curr Opin Genet Dev, 1997, 7(4): 524-529.
pmid: 9309185 |
[21] |
De Celis JF, Diaz-Benjumea FJ. Developmental basis for vein pattern variations in insect wings. Int J Dev Biol, 2003, 47(7-8): 653-663.
pmid: 14756341 |
[22] | Roskam JC, Brakefield PM. Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues. Biol J Linn Soc, 1999, 66(3): 345-356. |
[23] |
Espeland M, Podsiadlowski L. How butterfly wings got their pattern. Science, 2022, 378(6617): 249-250.
doi: 10.1126/science.ade5689 pmid: 36264812 |
[24] |
Kronforst MR, Kapan DD, Gilbert LE. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics, 2006, 174(1): 535-539.
pmid: 16783007 |
[25] | Shilo BZ, Barkai N. Buffering global variability of morphogen gradients. Dev Cell, 2017, 40(5): 429-438. |
[26] | Nijhout HF. A comprehensive model for colour pattern formation in butterflies. Proc R Soc Lond, 1990, 239(1294): 81-113. |
[27] |
Nijhout HF. Cautery-induced colour patterns in Precis coenia (Lepidoptera: Nymphalidae). J Embryol Exp Morphol, 1985, 86: 191-203.
pmid: 4031740 |
[28] | Brakefield PM, Beldade P, Zwaan BJ. Surgical manipulations on pupal wings from the African butterfly Bicyclus anynana: damage and cauteries. Cold Spring Harb Protoc, 2009, 2009(5): pdb.prot5204. |
[29] |
Serfas MS, Carroll SB. Pharmacologic approaches to butterfly wing patterning: sulfated polysaccharides mimic or antagonize cold shock and alter the interpretation of gradients of positional information. Dev Biol, 2005, 287(2): 416-424.
pmid: 16216238 |
[30] |
Colombres M, Henríquez JP, Reig GF, Scheu J, Calderón R, Alvarez A, Brandan E, Inestrosa NC. Heparin activates Wnt signaling for neuronal morphogenesis. J Cell Physiol, 2008, 216(3): 805-815.
doi: 10.1002/jcp.21465 pmid: 18449906 |
[31] | Yan D, Lin XH. Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect Biol, 2009, 1(3): a002493. |
[32] |
Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst MR, Long AD, McMillan WO, Reed RD. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci USA, 2012, 109(31): 12632-12637.
doi: 10.1073/pnas.1204800109 pmid: 22802635 |
[33] | Beldade P, Brakefield PM, Long AD. Generating phenotypic variation: prospects from “evo-devo”research on Bicyclus anynana wing patterns. Evol Dev, 2005, 7(2): 101-107. |
[34] | Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Monteiro A, French V, Carroll SB. Development, plasticity and evolution of butterfly eyespot patterns. Nature, 1996, 384(6606): 236-242. |
[35] | Beldade P, Brakefield PM, Long AD. Contribution of Distal-less to quantitative variation in butterfly eyespots. Nature, 2002, 415(6869): 315-318. |
[36] |
Gonsalves FC, DasGupta R. Function of the wingless signaling pathway in Drosophila. Methods Mol Biol, 2008, 469: 115-125.
doi: 10.1007/978-1-60327-469-2_10 pmid: 19109707 |
[37] |
Yang L, Meng F, Ma D, Xie W, Fang M. Bridging Decapentaplegic and Wingless signaling in Drosophila wings through repression of naked cuticle by Brinker. Development, 2013, 140(2): 413-422.
doi: 10.1242/dev.082578 pmid: 23250215 |
[38] | Banerjee TD. Molecular mechanisms underlying venation and color patterning in Bicyclus anynana butterflies[Dissertation]. National University of Singapore, 2021. |
[39] | Özsu N, Chan QY, Chen B, Das Gupta M, Monteiro A. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol, 2017, 429(1): 177-185. |
[40] |
Beldade P, Monteiro A. Eco-evo-devo advances with butterfly eyespots. Curr Opin Genet Dev, 2021, 69: 6-13.
doi: 10.1016/j.gde.2020.12.011 pmid: 33434722 |
[41] | Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, McMillan WO. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 2011, 333(6046): 1137-1141. |
[42] | Martin A, McCulloch KJ, Patel NH, Briscoe AD, Gilbert LE, Reed RD. Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. Evodevo, 2014, 5(1): 7. |
[43] |
Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM, Hubisz MJ, Munn PR, Zhang LL, Benson C, Mazo-Vargas A, Danko CG, Counterman BA, Papa R, Reed RD. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci USA, 2019, 116(48): 24174-24183.
doi: 10.1073/pnas.1907068116 pmid: 31712408 |
[44] |
Van Belleghem SM, Ruggieri AA, Concha C, Livraghi L, Hebberecht L, Rivera ES, Ogilvie JG, Hanly JJ, Warren IA, Planas S, Ortiz-Ruiz Y, Reed R, Lewis JJ, Jiggins CD, Counterman BA, McMillan WO, Papa R. High level of novelty under the hood of convergent evolution. Science, 2023, 379(6636): 1043-1049.
doi: 10.1126/science.ade0004 pmid: 36893249 |
[45] | Kapan DD, Flanagan NS, Tobler A, Papa R, Reed RD, Gonzalez JA, Restrepo MR, Martinez L, Maldonado K, Ritschoff C, Heckel DG, McMillan WO. Localization of Müllerian mimicry genes on a dense linkage map of Heliconius erato. Genetics, 2006, 173(2): 735-757. |
[46] |
Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallbank RWR, Zhang LL, Papador JD, Martinez-Najera D, Jiggins CD, Kronforst MR, Breuker CJ, Reed RD, Patel NH, McMillan WO, Martin A. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc Natl Acad Sci USA, 2017, 114(40): 10701-10706.
doi: 10.1073/pnas.1708149114 pmid: 28923954 |
[47] | Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RWR, Wu GC, Maroja L, Ferguson L, Hanly JJ, Hines H, Salazar C, Merrill RM, Dowling AJ, Ffrench-Constant RH, Llaurens V, Joron M, McMillan WO, Jiggins CD. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature, 2016, 534(7605): 106-110. |
[48] | Livraghi L, Hanly JJ, Van Bellghem SM, Montejo- Kovacevich G, Van der Heijden ES, Loh LS, Ren A, Warren IA, Lewis JJ, Concha C, Hebberecht L, Wright CJ, Walker JM, Foley J, Goldberg ZH, Arenas-Castro H, Salazar C, Perry MW, Papa R, Martin A, McMillan WO, Jiggins CD. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife, 2021, 10: e68549. |
[49] |
Teng DQ, Li FY, Zhang W. Using comprehensive machine-learning models to classify complex morphological characters. Ecol Evol, 2021, 11(15): 10421-10431.
doi: 10.1002/ece3.7845 pmid: 34367585 |
[50] |
Wang ST, Teng DQ, Li XY, Yang PW, Da W, Zhang YM, Zhang YB, Liu GC, Zhang XS, Wan WT, Dong ZW, Wang DH, Huang S, Jiang ZS, Wang QY, Lohman DJ, Wu YJ, Zhang LL, Jia FH, Westerman E, Zhang L, Wang W, Zhang W. The evolution and diversification of oakleaf butterflies. Cell, 2022, 185(17): 3138-3152.e20.
doi: 10.1016/j.cell.2022.06.042 pmid: 35926506 |
[51] | Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, Cunha A, Pierce NA. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development, 2018, 145(12): dev165753. |
[52] | Banerjee TD, Murugesan SN, Connahs H, Monteiro A. Spatial and temporal regulation of Wnt signaling pathway members in the development of butterfly wing patterns. Sci Adv, 2023, 9(30): eadg3877. |
[53] | Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764. |
[54] |
Hockemeyer D, Wang HY, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng XD, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011, 29(8): 731-734.
doi: 10.1038/nbt.1927 pmid: 21738127 |
[55] |
Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[56] | Martin A, Reed RD. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol, 2014, 395(2): 367-378. |
[57] | Concha C, Wallbank RWR, Hanly JJ, Fenner J, Livraghi L, Rivera ES, Paulo DF, Arias C, Vargas M, Sanjeev M, Morrison C, Tian D, Aguirre P, Ferrara S, Foley J, Pardo-Diaz C, Salazar C, Linares M, Massardo D, Counterman BA, Scott MJ, Jiggins CD, Papa R, Martin A, McMillan WO. Interplay between developmental flexibility and determinism in the evolution of mimetic Heliconius wing patterns. Curr Biol, 2019, 29(23): 3996-4009.e4. |
[58] |
Monteiro A, Glaser G, Stockslager S, Glansdorp N, Ramos D. Comparative insights into questions of Lepidopteran wing pattern homology. BMC Dev Biol, 2006, 6: 52.
pmid: 17090321 |
[59] |
Zhang LL, Mazo-Vargas A, Reed RD. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc Natl Acad Sci USA, 2017, 114(40): 10707-10712.
doi: 10.1073/pnas.1709058114 pmid: 28923944 |
[60] | Thayer RC, Allen FI, Patel NH. Structural color in Junonia butterflies evolves by tuning scale lamina thickness. eLife, 2020, 9: e52187. |
[61] |
Vankuren NW, Massardo D, Nallu S, Kronforst MR. Butterfly mimicry polymorphisms highlight phylogenetic limits of gene reuse in the evolution of diverse adaptations. Mol Biol Evol, 2019, 36(12): 2842-2853.
doi: 10.1093/molbev/msz194 pmid: 31504750 |
[62] | Van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ. The industrial melanism mutation in British peppered moths is a transposable element. Nature, 2016, 534(7605): 102-105. |
[63] |
van der Burg KRL, Lewis JJ, Brack BJ, Fandino RA, Mazo-Vargas A, Reed RD. Genomic architecture of a genetically assimilated seasonal color pattern. Science, 2020, 370(6517): 721-725.
doi: 10.1126/science.aaz3017 pmid: 33154142 |
[64] | Tian S, Banerjee TD, Qi Wee JL, Wang YH, Murugesan SN, Monteiro A. A micro-RNA drives a 100-million-year adaptive evolution of melanic patterns in butterflies and moths. bioRxiv, 2024, doi: 10.1101/2024.02.09.579741. |
[65] | Livraghi L, Hanly JJ, Evans E, Wright CJ, Loh LS, Mazo-Vargas A, Kamrava K, Carter A, van der Heijden ESM, Reed RD, Papa R, Jiggins CD, Martin A. A long non-coding RNA at the cortex locus controls adaptive colouration in butterflies. bioRxiv, 2024, doi: 10.1101/2024.02.09.579710. |
[66] | Fandino RA, Brady NK, Chatterjee M, McDonald JMC, Livraghi L, van der Burg KRL, Mazo-Vargas A, Markenscoff- Papadimitriou E, Reed RD. The ivory lncRNA regulates seasonal color patterns in buckeye butterflies. bioRxiv, 2024, doi: 10.1101/2024.02.09.579733. |
[67] |
Westerman EL, VanKuren NW, Massardo D, Tenger-Trolander A, Zhang W, Hill RI, Perry M, Bayala E, Barr K, Chamberlain N, Douglas TE, Buerkle N, Palmer SE, Kronforst MR. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr Biol, 2018, 28(21): 3469-3474.e4.
doi: S0960-9822(18)31135-7 pmid: 30415702 |
[68] | Bayala EX, VanKuren NW, Massardo D, Kronforst MR. From the formation of embryonic appendages to the color of wings: conserved and novel roles of aristaless1 in butterfly development. bioRxiv, 2021, doi: 10.1101/2021.12.02.470931. |
[69] | Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP, Kronforst MR. doublesex is a mimicry supergene. Nature, 2014, 507(7491): 229-232. |
[70] | Palmer DH, Kronforst MR. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nat Commun, 2020, 11(1): 6. |
[71] |
Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C, de la Paz Celorio-Mancera M, Brattström O, Hill J, Lehmann P, Käkelä R, Wheat CW. A transposable element insertion is associated with an alternative life history strategy. Nat Commun, 2019, 10(1): 5757.
doi: 10.1038/s41467-019-13596-2 pmid: 31848330 |
[72] | Hanly JJ, Francescutti CM, Loh LS, Corning OBWH, Long DJ, Nakatani MA, Porter AH, Martin A. Genetics of yellow-orange color variation in a pair of sympatric sulphur butterflies. Cell Rep, 2023, 42(8): 112820. |
[73] | Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol, 2015, 16(2): 82-94. |
[74] | Dey BK, Zhao XL, Popo-Ola E, Campos AR. Mutual regulation of the Drosophila disconnected (disco) and Distal-less (Dll) genes contributes to proximal-distal patterning of antenna and leg. Cell Tissue Res, 2009, 338(2): 227-240. |
[75] |
Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless- independent mechanism. Development, 2000, 127(9): 1879-1886.
doi: 10.1242/dev.127.9.1879 pmid: 10751176 |
[76] | Martín M, Ostalé CM, de Celis JF.. Patterning of the Drosophila L2 vein is driven by regulatory interactions between region-specific transcription factors expressed in response to Dpp signalling. Development, 2017, 144(17): 3168-3176. |
[77] |
Macdonald WP, Martin A, Reed RD. Butterfly wings shaped by a molecular cookie cutter: evolutionary radiation of lepidopteran wing shapes associated with a derived Cut/wingless wing margin boundary system. Evol Dev, 2010, 12(3): 296-304.
doi: 10.1111/j.1525-142X.2010.00415.x pmid: 20565540 |
[78] |
Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA, 2004, 101(43): 15275-15278.
pmid: 15492210 |
[79] | Ma ZZ, Zheng Y, Chao ZJ, Chen HT, Zhang YH, Yin MZ, Shen J, Yan S. Visualization of the process of a nanocarrier- mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading. J Nanobiotechnology, 2022, 20(1): 124. |
[80] | Komata S, Yoda S, KonDo Y, Shinozaki S, Tamai K, Fujiwara H. Functional unit of supergene in female- limited Batesian mimicry of Papilio polytes. Genetics, 2023, 223(2): iyac177. |
[81] | Givnish TJ. How a better understanding of adaptations can yield better use of morphology in plant systematics:toward Eco-Evo-Devo. In: Stuessy TF, Mayer V, Horandl E, eds. Deep Morphology. New York: Lubrecht and Cramer, 2003, 141: 273-295. |
[82] |
Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol, 2010, 25(8): 459-467.
doi: 10.1016/j.tree.2010.05.006 pmid: 20557976 |
[83] |
Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP. The origin and evolution of cell types. Nat Rev Genet, 2016, 17(12): 744-757.
doi: 10.1038/nrg.2016.127 pmid: 27818507 |
[84] | Prakash A, Dion E, Monteiro A. The molecular basis of macrochaete diversification highlighted by a single-cell atlas of Bicyclus anynana butterfly pupal forewings. bioRxiv, 2023, doi: 10.1101/2023.08.23.554425. |
[1] | Dongxia Pan, Hui Wang, Benhai Xiong, Xiangfang Tang. Progress on CRISPR-Cas gene editing technology in sheep production [J]. Hereditas(Beijing), 2024, 46(9): 690-700. |
[2] | Sen Yang, Baoxia Ma, Hongrun Qian, Jieyu Cui, Xiaojun Zhang, Lida Li, Zehui Wei, Zhiying Zhang, Jiangang Wang, Kun Xu. CRISPR/Gal4BD-Cas donor adapting systems based on miniaturized Cas proteins for improved gene editing [J]. Hereditas(Beijing), 2024, 46(9): 716-726. |
[3] | Ma Baoxia, Yang Sen, Lyu Ming, Wang Yuren, Chang Liye, Han Yifan, Wang Jiangang, Guo Yang, Xu Kun. Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing [J]. Hereditas(Beijing), 2024, 46(6): 466-477. |
[4] | Zhenlin Cao, Jinhong Li, Minhui Zhou, Manting Zhang, Ning Wang, Yifei Chen, Jiaxin Li, Qingsong Zhu, Wenjun Gong, Xuchen Yang, Xiaolong Fang, Jiaxian He, Meina Li. Functional study of the soybean stamen-preferentially expressed gene GmFLA22a in regulating male fertility [J]. Hereditas(Beijing), 2024, 46(4): 333-345. |
[5] | Yanchun Bao, Lingli Dai, Zaixia Liu, Fengying Ma, Yu Wang, Yongbin Liu, Mingjuan Gu, Risu Na, Wenguang Zhang. Progress on CRISPR/Cas9 system in the genetic improvement of livestock and poultry [J]. Hereditas(Beijing), 2024, 46(3): 219-231. |
[6] | Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang. Revelation of rice molecular design breeding: the blend of tradition and modernity [J]. Hereditas(Beijing), 2023, 45(9): 718-740. |
[7] | Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun. Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA [J]. Hereditas(Beijing), 2023, 45(7): 593-601. |
[8] | Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei. A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair [J]. Hereditas(Beijing), 2022, 44(8): 708-719. |
[9] | Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni. The cutting edge of gene regulation approaches in model organism Drosophila [J]. Hereditas(Beijing), 2022, 44(1): 3-14. |
[10] | Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He. Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs [J]. Hereditas(Beijing), 2021, 43(3): 261-270. |
[11] | Yingnan Chen, Jing Lu. Application of CRISPR/Cas9 mediated gene editing in trees [J]. Hereditas(Beijing), 2020, 42(7): 657-668. |
[12] | Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang. Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals [J]. Hereditas(Beijing), 2020, 42(7): 641-656. |
[13] | Lianchao Tang, Feng Gu. Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM [J]. Hereditas(Beijing), 2020, 42(3): 236-249. |
[14] | Junxia Cao, Youliang Wang, Zhengxu Wang. Advances in precise regulation of CRISPR/Cas9 gene editing technology [J]. Hereditas(Beijing), 2020, 42(12): 1168-1177. |
[15] | Qianqian Zhang,Xuan Shang,Wanying Lin,Xiangmin Xu. Effect of genetic modifiers on the clinical severity of β-thalassemia [J]. Hereditas(Beijing), 2019, 41(8): 669-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号