Hereditas(Beijing) ›› 2021, Vol. 43 ›› Issue (3): 261-270.doi: 10.16288/j.yczz.20-222
Previous Articles Next Articles
Dingwei Peng1(
), Ruiqiang Li1(
), Wu Zeng1(
), Min Wang1, Xuan Shi1, Jianhua Zeng2, Xiaohong Liu1, Yaoshen Chen1, Zuyong He1(
)
Received:2020-07-15
Online:2021-03-16
Published:2021-02-03
Supported by:Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He. Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] | WalkerRG, PoggioliT, KatsimpardiL, BuchananSM, OhJ, WattrusS, HeideckerB, FongYW, RubinLL, GanzP, ThompsonTB, WagersAJ, LeeRT. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ Res, 2016, 118(7): 1125- 1142. |
| [2] | McPherronAC, LawlerAM, LeeSJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997,387(6628):83- 90. |
| [3] | GrobetL, MartinLJ, PonceletD, PirottinD, BrouwersB, RiquetJ, SchoeberleinA, DunnerS, MénissierF, MassabandaJ, FriesR, HansetR, GeorgesM. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet, 1997, 17(1): 71- 74. |
| [4] | ClopA, MarcqF, TakedaH, PirottinD, TordoirX, BibéB, BouixJ, CaimentF, ElsenJM, EychenneF, LarzulC, LavilleE, MeishF, MilenkovicD, TobinJ, CharlierC, GeorgesM. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006, 38(7): 813- 818. |
| [5] | MosherDS, QuignonP, BustamanteCD, SutterNB, MellershCS, ParkerHG, OstranderEA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet, 2007,3(5): e79. |
| [6] | CatipovićB. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med, 2004, 351(10): 1030- 1031. |
| [7] | LeeSJ, McPherronAC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA, 2001,98(16):9306- 9311. |
| [8] | SonstegardTS, RohrerGA, SmithTP. Myostatin maps to porcine chromosome 15 by linkage and physical analyses. Anim Genet, 1998, 29(1): 19- 22. |
| [9] | ThiesRS, ChenT, DaviesMV, TomkinsonKN, PearsonAA, ShakeyQA, WolfmanNM. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF- 8 receptor binding. Growth Factors, 2001,18(4):251- 259. |
| [10] | WolfmanMW, McPherronAC, PappanoWN, DaviesMV, SongK, TomkinsonKN, WrightJF, ZhaoL, SebaldSM, GreenspanDS, LeeSJ. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA, 2003,100(26):15842- 15846. |
| [11] | LeeSJ. Regulstion of muscle mass by myostatin. Annu Rev Cell Dev Biol, 2004, 20(1): 61- 86. |
| [12] | KambadurR, SharmaM, SmithTP, BassJJ. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res, 1997,7(9):910- 916. |
| [13] | StarckCS, Sutherland-SmithAJ. The C313Y Piedmontese mutation decreases myostatin covalent dimerisation and stability. BMC Res Notes. 2011,4:442. |
| [14] | WangM, HuangX, ShiX, LiuXF, ZengJH, LiuXH, ChenYS, HeZY. Editing the MSTN gene of Guangdong Small Spotted pigs by using CRISPR-Cas9 system. Guangdong Agric Sci, 2017, 44( 02): 141- 148. |
| 王敏, 黄翔, 石翾, 刘小凤, 曾检华, 刘小红, 陈瑶生, 何祖勇. 应用CRISPR/Cas9编辑广东小耳花猪MSTN基因. 广东农业科学, 2017, 44(2): 141- 148. | |
| [15] | ZhangZG, ZhangXL, LiJY. The excellent breeding of Chinese pigs and its contribution to the world pig industry. J Nat Resour, 1994, 9(1): 1- 8. |
| 张仲葛, 张晓岚, 李锦钰. 中国猪的优良种性及其对世界养猪业的贡献. 自然资源学报, 1994, 9(1): 1- 8. | |
| [16] | RanFA, HsuPD, WrightJ, AgarwalaV, ScottDA, ZhangF. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013, 8(11): 2281- 2308. |
| [17] | LiuXF, LiuHB, WangM, LiRQ, ZengJH, MoDL, CongPQ, LiuXH, ChenYS, HeZY. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs. Transgenic Res, 2019, 28(1): 141- 150. |
| [18] | QianLL, TangMX, YangJZ, WangQQ, CaiCB, JiangSW, LiHG, JiangK, GaoPF, MaDZ, ChenYX, AnXR, LiK, CuiWT. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep, 2015,5:14435. |
| [19] | BerryC, ThomasM, LangleyB, SharmaM, KambadurR. Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. Am J Physiol Cell Physiol, 2002, 283(1): C135- 141. |
| [1] | Xun Zhou, Shijie Zhou, Jie Liu, Yuxiang Wang. CRISPR/Cas system targeting RNA and its derivative technology [J]. Hereditas(Beijing), 2025, 47(8): 842-860. |
| [2] | Jiaxin Ni, Wei Zhang. Progress and prospects on evolutionary developmental biology of butterfly wing patterns [J]. Hereditas(Beijing), 2025, 47(2): 258-270. |
| [3] | Dongxia Pan, Hui Wang, Benhai Xiong, Xiangfang Tang. Progress on CRISPR-Cas gene editing technology in sheep production [J]. Hereditas(Beijing), 2024, 46(9): 690-700. |
| [4] | Sen Yang, Baoxia Ma, Hongrun Qian, Jieyu Cui, Xiaojun Zhang, Lida Li, Zehui Wei, Zhiying Zhang, Jiangang Wang, Kun Xu. CRISPR/Gal4BD-Cas donor adapting systems based on miniaturized Cas proteins for improved gene editing [J]. Hereditas(Beijing), 2024, 46(9): 716-726. |
| [5] | Ma Baoxia, Yang Sen, Lyu Ming, Wang Yuren, Chang Liye, Han Yifan, Wang Jiangang, Guo Yang, Xu Kun. Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing [J]. Hereditas(Beijing), 2024, 46(6): 466-477. |
| [6] | Zhenlin Cao, Jinhong Li, Minhui Zhou, Manting Zhang, Ning Wang, Yifei Chen, Jiaxin Li, Qingsong Zhu, Wenjun Gong, Xuchen Yang, Xiaolong Fang, Jiaxian He, Meina Li. Functional study of the soybean stamen-preferentially expressed gene GmFLA22a in regulating male fertility [J]. Hereditas(Beijing), 2024, 46(4): 333-345. |
| [7] | Yanchun Bao, Lingli Dai, Zaixia Liu, Fengying Ma, Yu Wang, Yongbin Liu, Mingjuan Gu, Risu Na, Wenguang Zhang. Progress on CRISPR/Cas9 system in the genetic improvement of livestock and poultry [J]. Hereditas(Beijing), 2024, 46(3): 219-231. |
| [8] | Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang. Revelation of rice molecular design breeding: the blend of tradition and modernity [J]. Hereditas(Beijing), 2023, 45(9): 718-740. |
| [9] | Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun. Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA [J]. Hereditas(Beijing), 2023, 45(7): 593-601. |
| [10] | Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li. Generation of genetically modified rat models via the CRISPR/Cas9 technology [J]. Hereditas(Beijing), 2023, 45(1): 78-87. |
| [11] | Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei. A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair [J]. Hereditas(Beijing), 2022, 44(8): 708-719. |
| [12] | Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He. Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis [J]. Hereditas(Beijing), 2022, 44(7): 581-590. |
| [13] | Yao Liu, Xianhui Zhou, Shuhong Huang, Xiaolong Wang. Prime editing: a search and replace tool with versatile base changes [J]. Hereditas(Beijing), 2022, 44(11): 993-1008. |
| [14] | Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni. The cutting edge of gene regulation approaches in model organism Drosophila [J]. Hereditas(Beijing), 2022, 44(1): 3-14. |
| [15] | Guangwu Yang, Yuan Tian. The F-box gene Ppa promotes lipid storage in Drosophila [J]. Hereditas(Beijing), 2021, 43(6): 615-622. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号