[1] 赵彦平, 赵春海. 植物转基因育种的分析与研究. 生物技术通报, 2011, 12(3): 73-76. [2] Lu YH, Wu KM, Jiang YY, Xia B, Li P, Feng HQ, Wyckhuys KAG, Guo YY. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science , 2010, 328(5982): 1151-1154. [3] Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN. Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol , 2007, 73(13): 4365-4367. [4] [4] Visser S, Parkinson D. Soil biological criteria as indicators of soil quality: Soil microorganisms. Am J Alternat Agr , 1992, 7(S1-2): 33-37. [5] Baumgarte S, Tebbe CC. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol , 2005, 14(8): 2539-2551. [6] Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn. Nature , 1999, 402(6761): 480. [7] Saxena D, Stotzky G. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem , 2001, 33(9): 1255-1230. [8] Liu B, Zeng Q, Yan FM, Xu HG, Xu CR. Effects of transgenic plants on soil microorganisms. Plant Soil , 2005, 271(1-2): 1-13. [9] Mondy S, Lenglet A, Beury-Cirou A, Libanga C, Ratet P, Faure D, Dessaux Y. An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mol Ecol , 2014, 23(19): 4846-4861. [10] Winder RS, Lamarche J, Constabel CP, Hamelin RC. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils. Front Microbiol , 2013, 4: 290. [11] James C. Global review of commercialized transgenic Crops: 2001 Feature: Bt Cotton. ISAAA Briefs 26. NY, 2002. [12] Xia ZJ, Achar PN, Gu B. Vegetative compatibility groupings of Verticillium dahliae from cotton in mainland China. Eur J Plant Pathol , 1998, 104(9): 871-876. [13] 马存, 简桂良, 郑传临. 中国棉花抗枯、黄萎病育种50年. 中国农业科学, 2002, 35(5): 508-513. [14] Zhu Q, Maher EA, Masoud S, Dixon RA, Lamp CJ. Enhanced protection against fungal attack by constitutive co- expression of chitinase and glucanase genes in transgenic tobacco. Nat Biotechnol , 1994, 12(8): 807-812. [15] 程红梅, 简桂良, 倪万潮, 杨红华, 王志兴, 孙文姬, 张保龙, 王晓峰, 马存, 贾士荣. 转几丁质酶和 β-1, 3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性. 中国农业科学, 2005, 38(6): 1160-1166. [16] 朱荷琴, 冯自力, 李志芳, 赵丽红, 师勇强, 尹志新. 转几丁质酶和葡聚糖酶双价基因棉花株系对黄萎病的抗性. 棉花学报, 2011, 23(1): 58-63. [17] 王振宇, 蒋媛媛, 马奇祥, 崔小伟, 娄永尚, 赵辉. 转抗病基因棉花荒地生存竞争能力研究. 河南农业科学, 2010, (10): 51-52. [18] 魏锋, 朱荷琴, 肖蕊, 杨家荣. 转Chi+Glu双价基因棉对土壤微生物群落功能多样性的影响. 农业环境科学学报, 2011, 30(10): 2081-2090. [19] 魏锋, 朱荷琴, 肖蕊, 杨家荣. 转 Chi+ Glu 双价基因棉对土壤酶活性的影响. 西北农业学报, 2012, 20(9): 69-72. [20] Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, eds. Nucleic Acid Techniques in Bacterial Systematics. New York, USA: Wiley, 1991: 115-175. [21] Simpson EH. The interpretation of interaction in contingency tables. J Roy Stat Soc Ser B , 1951, 13(2): 238-241. [22] 李孝刚, 刘标, 徐文华, 曹伟, 方志翔, 刘蔸蔸, 贺昭和, 韩正敏. 转 Bt 基因抗虫棉对土壤微生物群落生物多样性的影响. 生态与农村环境学报, 2011, 27(1): 17-22. [23] Torsvik V, Goksøyr J, Daae FL. High diversity in DNA of soil bacteria. Appl Environ Microbiol , 1990, 56(3): 782-787. [24] Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol , 2006, 72(3): 1719-1728. [25] Lee YE, Yang SH, Bae TW, Kang HG, Lim PO, Lee HY. Effects of field-grown genetically modified Zoysia grass on bacterial community structure. J Microbiol Biotechnol , 2011, 21(4): 333-340. [26] Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS. A field study with genetically enginee |