遗传 ›› 2016, Vol. 38 ›› Issue (10): 881-893.doi: 10.16288/j.yczz.16-141
陈昱帆1, 2, 刘诗胤1, 2, 梁志彬1, 2, 吕明发1, 2, 周佳暖1, 2, 张炼辉1, 2
收稿日期:
2016-04-20
修回日期:
2016-06-20
出版日期:
2016-10-20
发布日期:
2016-10-20
作者简介:
张炼辉,博士,教授,博士生导师,研究方向:微生物学、植物病理学。
基金资助:
Yufan Chen1, 2, Shiyin Liu1, 2, Zhibin Liang1, 2, Mingfa Lv1, 2, Jianuan Zhou1, 2, Lianhui Zhang1, 2
Received:
2016-04-20
Revised:
2016-06-20
Online:
2016-10-20
Published:
2016-10-20
Supported by:
摘要: 微生物耐药性已成为全球关注的严重问题,其演化机制和调控机理也已成为研究热点。近年来的研究发现,一些微生物耐药性机制受到群体感应系统的调控。群体感应是一种在微生物界广泛存在并与菌体密度关联的细胞-细胞间的通讯系统。高密度的菌落群体能够产生足够数量的小分子信号,激活下游包括致病毒力和耐药性机制在内的多种细胞进程,耐受抗生素并且危害寄主。本文结合国内外最新的研究进展,对微生物群体感应系统的研究现状进行了概括性介绍,重点阐述了群体感应系统对微生物耐药性机制的调控作用,如微生物生物被膜形成和药物外排泵调控等方面的作用,并探讨了利用群体淬灭控制微生物耐药性的新策略。
陈昱帆, 刘诗胤, 梁志彬, 吕明发, 周佳暖, 张炼辉. 群体感应与微生物耐药性[J]. 遗传, 2016, 38(10): 881-893.
Yufan Chen, Shiyin Liu, Zhibin Liang, Mingfa Lv, Jianuan Zhou, Lianhui Zhang. Quorum sensing and microbial drug resistance[J]. Hereditas(Beijing), 2016, 38(10): 881-893.
[1] Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature , 2004, 430(6996): 242-249. [2] Wise R. Antimicrobial resistance: priorities for action. J Antimicrob Chemother , 2002, 49(4): 585-586. [3] Monroe S, Polk R. Antimicrobial use and bacterial resistance. Curr Opin Microbiol , 2000, 3(5): 496-501. [4] Livermore DM. The need for new antibiotics. Clin Microbiol Infect , 2004, 10(Suppl. 4): 1-9. [5] Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol , 2010, 8(4): 260-271. [6] Spratt BG. Resistance to antibiotics mediated by target alterations. Science , 1994, 264(5157): 388-393. [7] Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet , 2001, 358(9276): 135-138. [8] Barbier F, Wolff M. Multi-drug resistant Pseudomonas aeruginosa : towards a therapeutic dead end? Med Sci ( Paris ), 2010, 26(11): 960-968. [9] Fuqua C, Greenberg EP. Listening in on bacteria: acyl- homoserine lactone signalling. Nat Rev Mol Cell Biol , 2002, 3(9): 685-695. [10] Deng YY, Wu JE, Tao F, Zhang LH. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem Rev , 2011, 111(1): 160-173. [11] Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature , 2000, 406(6797): 775-781. [12] Zhou JN, Zhang HB, Lv MF, Chen YF, Liao LS, Cheng YY, Liu SY, Chen SH, He F, Cui ZN, Jiang ZD, Chang CQ, Zhang LH. SlyA regulates phytotoxin production and virulence in Dickeya zeae EC1. Mol Plant Pathol , 2016, doi:10.1111/mpp.12376. [13] Ambler RP, Coulson AFW, Frère JM, Ghuysen JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG. A standard numbering scheme for the class A β -lactamases. Biochem J , 1991, 276(1): 269-270. [14] Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother , 1995, 39(6): 1211-1233. [15] Medeiros A A. β-lactamases. Br Med Bull , 1984, 40(1): 18-27. [16] Philippon A, Labia R, Jacoby G. Extended-spectrum β-lactamases. Antimicrob Agents Chemother , 1989, 33(8): 1131-1136. [17] Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat , 2010, 13(6): 151-171. [18] Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother , 1992, 36(4): 695-703. [19] Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Mol Biol Rev , 1996, 60(4): 575-608. [20] Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA , 1965, 54(4): 1133-1141. [21] Song MD, Wachi M, Doi M, Ishino F, Matsuhashi M. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett , 1987, 221(1): 167-171. [22] Ubukata K, Nonoguchi R, Matsuhashi M, Konno M. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S . aureus -specific penicillin-binding protein. J Bacteriol , 1989, 171(5): 2882-2885. [23] Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus . Annu Rev Biochem , 2015, 84(1): 577-601. [24] Lim D, Strynadka NCJ. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus . Nat Struct Biol , 2002, 9(11): 870-876. [25] Mah TFC, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol , 2001, 9(1): 34-39. [26] Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect , 2004, 10(1): 12-26. [27] de la Cruz F, Davies J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol , 2000, 8(3): 128-133. [28] Mah TF, Pitts B, Pellock B, Walker GC, Stewart P S, O'Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature , 2003, 426(6964): 306-310. [29] Waters CM, Bassler BL. Quorum sensing: cell- to-cell communication in bacteria. Annu Rev Cell Dev Biol , 2005, 21(1): 319-346. [30] Schuster M, Sexton DJ, Diggle SP, Greenberg EP. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol , 2013, 67(1): 43-63. [31] Miller MB, Bassler BL. Quorum sensing in Bacteria. Annu Rev Microbiol , 2001, 55(1): 165-199. [32] Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry , 1981, 20(9): 2444-2449. [33] Zhang LH, Murphy PJ, Kerr A, Tate ME. Agrobacterium conjugation and gene regulation by N -acyl-L-homoserine lactones. Nature , 1993, 362(6419): 446-448. [34] Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA , 1994, 91(1): 197-201. [35] Ji GY, Beavis RC, Novick RP. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA , 1995, 92(26): 12055-12059. [36] Flavier AB, Clough SJ, Schell MA, Denny TP. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum . Mol Microbiol , 1997, 26(2): 251-259. [37] Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson F M. Structural identification of a bacterial quorum-sensing signal containing boron. Nature , 2002, 415(6871): 545-549. [38] Wang LH, He YW, Gao YF, Wu JE, Dong YH, He CZ, Wang SX, Weng LX, Xu JL, Tay L, Fang RX, Zhang LH. A bacterial cell-cell communication signal with cross- kingdom structural analogues. Mol Microbiol , 2004, 51(3): 903-912. [39] Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC. Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev , 2001, 25(4): 365-404. [40] Withers H, Swift S, Williams P. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol , 2001, 4(2): 186-193. [41] Zhang LH, Dong YH. Quorum sensing and signal interference: diverse implications. Mol Microbiol , 2004, 53(6): 1563-1571. [42] Oh KB, Miyazawa H, Naito T, Matsuoka H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans . Proc Natl Acad Sci USA , 2001, 98(8): 4664-4668. [43] Pirhonen M, Flego D, Heikinheimo R, Palva ET. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora . EMBO J , 1993, 12(6): 2467-2476. [44] Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science , 1993, 260(5111): 1127-1130. [45] Ulrich RL. Quorum quenching: enzymatic disruption of N -acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis . Appl Environ Microbiol , 2004, 70(10): 6173-6180. [46] Valade E, Thibault FM, Gauthier YP, Palencia M, Popoff MY, Vidal DR. The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J Bacteriol , 2004, 186(8): 2288-2294. [47] Dunlap PV, Kuo A. Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol , 1992, 174(8): 2440-2448. [48] Meighen EA. Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev , 1991, 55(1): 123-142. [49] Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV. Reclassification of Vibrio fischeri , Vibrio logei , Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol , 2007, 57(12): 2823-2829. [50] Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJG, Slater H, Dow JM, Williams P, Daniels MJ. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol , 1997, 24(3): 555-566. [51] He YW, Xu M, Lin K, Ng YJA, Wen CM, Wang LH, Liu ZD, Zhang HB, Dong YH, Dow JM, Zhang LH. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris : identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol , 2006, 59(2): 610-622. [52] He YW, Wang C, Zhou L, Song HW, Dow JM, Zhang LH. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. J Biol Chem , 2006, 281(44): 33414-33421. [53] He YW, Ng AYJ, Xu M, Lin K, Wang LH, Dong YH, Zhang LH. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol , 2007, 64(2): 281-292. [54] Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM. The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog , 2015, 11(7): e1004986. [55] He YW, Zhang LH. Quorum sensing and virulence regulation in Xanthomonas campestris . FEMS Microbiol Rev , 2008, 32(5): 842-857. [56] Ryan RP, Dow JM. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol , 2011, 19(3): 145-152. [57] Boon C, Deng YY, Wang LH, He YW, Xu JL, Fan Y, Pan SQ, Zhang LH. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J , 2008, 2(1): 27-36. [58] He YW, Wu JE, Cha JS, Zhang LH. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol , 2010, 10(1): 187. [59] Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell- to-cell signals in the development of a bacterial biofilm. Science , 1998, 280(5361): 295-298. [60] de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun , 2000, 68(9): 4839-4849. [61] Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology , 2002, 148(1): 87-102. [62] Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun , 2009, 77(12): 5631-5639. [63] Venturi V. Regulation of quorum sensing in Pseudomonas . FEMS Microbiol Rev , 2006, 30(2): 274-291. [64] Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa : a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol , 2009, 12(2): 182-191. [65] Lee J, Zhang LH. The hierarchy quorum sensing network in Pseudomonas aeruginosa . Protein & Cell , 2015, 6(1): 26-41. [66] Dandekar AA, Greenberg EP. Microbiology: Plan B for quorum sensing. Nat Chem Biol , 2013, 9(5): 292-293. [67] Lee J, Wu JE, Deng YY, Wang J, Wang C, Wang JH, Chang CQ, Dong YH, Williams P, Zhang LH. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol , 2013, 9(5): 339-343. [68] Tao F, Swarup S, Zhang LH. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ Microbiol , 2010, 12(12): 3159-3170. [69] Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA , 2003, 100(19): 10995-11000. [70] Romling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the First 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev , 2013, 77(1): 1-52. [71] Whiteley CG, Lee DJ. Bacterial diguanylate cyclases: Structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol Adv , 2015, 33(1): 124-141. [72] Hengge R. Novel tricks played by the second messenger c-di-GMP in bacterial biofilm formation. EMBO J , 2013, 32(3): 322-323. [73] Steiner S, Lori C, Boehm A, Jenal U. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J , 2013, 32(3): 354-368. [74] Newell PD, Yoshioka S, Hvorecny KL, Monds RD, O'Toole GA. Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1. J Bacteriol , 2011, 193(18): 4685- 4698. [75] Monds RD, Newell PD, Gross RH, O'Toole GA. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol , 2007, 63(3): 656-679. [76] Newell PD, Monds RD, O'Toole GA. LapD is a bis-(3', 5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci USA , 2009, 106(9): 3461-3466. [77] Newell PD, Boyd CD, Sondermann H, O'Toole GA, Rahme LG. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol , 2011, 9(2): e1000587. [78] Waters CM, Lu WY, Rabinowitz JD, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT . J Bacteriol , 2008, 190(7): 2527- 2536. [79] Hammer BK, Bassler BL. Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol , 2009, 191(1): 169-177. [80] Yamaguchi A, Nakashima R, Sakurai K. Structural basis of RND-type multidrug exporters. Front Microbiol , 2015, 6: 327. [81] Sawada I, Maseda H, Nakae T, Uchiyama H, Nomura N. A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR- mediated regulation in Pseudomonas aeruginosa . Microbiol Immunol , 2004, 48(5): 435-439. [82] Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, Nomura N. Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa . Antimicrob Agents Chemother , 2004, 48(4): 1320-1328. [83] Chan YY, Chua KL. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol , 2005, 187(14): 4707-4719. [84] Saurav K, Bar-Shalom R, Haber M, Burgsdorf I, Oliviero G, Costantino V, Morgenstern D, Steindler L. In search of alternative antibiotic drugs: quorum-quenching activity in sponges and their bacterial isolates. Front Microbiol , 2016, 7: 416. [85] Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. Quenching quorum-sensing-dependent bacterial infection by an N -acyl homoserine lactonase. Nature , 2001, 411(6839): 813-817. [86] Dong YH, Xu JL, Li XZ, Zhang LH. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora . Proc Natl Acad Sci USA , 2000, 97(7): 3526-3531. [87] Dong YH, Wang LY, Zhang LH. Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond B Biol Sci , 2007, 362(1483): 1201-1211. [88] Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev , 2016, 40(1): 86-116. [89] Truchado P, Giménez-Bastida JA, Larrosa M, Castro-Ibáñez I, Espı?n JC, Tomás-Barberán FA, Garcı?a- Conesa MT, Allende A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J Agric Food Chem , 2012, 60(36): 8885-8894. [90] Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol , 1996, 178(22): 6618-6622. [91] Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology , 2002, 148(4): 1119- 1127. [92] Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M. The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology , 2005, 151(11): 3589-3602. [93] Stevens AM, Queneau Y, Soulère L, von Bodman S, Doutheau A. Mechanisms and synthetic modulators of AHL-dependent gene regulation. Chem Rev , 2011, 111(1): 4-27. [94] Smith KM, Bu YG, Suga H. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol , 2003, 10(6): 563-571. [95] Muh U, Hare BJ, Duerkop BA, Schuster M, Hanzelka BL, Heim R, Olson ER, Greenberg EP. A structurally unrelated mimic of a Pseudomonas aeruginosa acyl- homoserine lactone quorum-sensing signal. Proc Natl Acad Sci USA , 2006, 103(45): 16948-16952. [96] Kim W, Surette MG. Coordinated regulation of two independent cell-cell signaling systems and swarmer differentiation in Salmonella enterica serovar Typhimurium. J Bacteriol , 2006, 188(2): 431-440. [97] Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa . Int J Med Microbiol , 2006, 296(2-3): 73-81. [98] Cabrol S, Olliver A, Pier GB, Andremont A, Ruimy R. Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa . J Bacteriol , 2003, 185(24): 7222-7230. [99] D'Argenio DA, Wu MH, Hoffman LR, Kulasekara HD, Déziel E, Smith EE, Nguyen H, Ernst RK, Larson TJ, Spencer DH, Brittnacher M, Hayden HS, Selgrade S, Klausen M, Goodlett DR, Burns JL, Ramsey BW, Miller SI. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol , 2007, 64(2): 512-533. [100] Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, Miller SI. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros , 2009, 8(1): 66-70. [101] Tingpej P, Smith L, Rose B, Zhu H, Conibear T, Al Nassafi K, Manos J, Elkins M, Bye P, Willcox M, Bell S, Wainwright C, Harbour C. Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol , 2007, 45(6): 1697-1704. [102] Zhu J, Beaber JW, Moré MI, Fuqua C, Eberhard A, Winans SC. Analogs of the autoinducer 3-oxooctanoyl- homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens . J Bacteriol , 1998, 180(20): 5398-5405. [103] Rumbaugh KP, Griswold JA, Hamood AN. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa . Microbes Infect , 2000, 2(14): 1721- 1731. [104] Foster KR, Parkinson K, Thompson CRL. What can microbial genetics teach sociobiology? Trends Genet , 2007, 23(2): 74-80. [105] West SA, Griffin AS, Gardner A, Diggle SP. Social evolution theory for microorganisms. Nat Rev Microbiol , 2006, 4(8): 597-607. [106] Dandekar AA, Chugani S, Greenberg EP. Bacterial quorum sensing and metabolic incentives to cooperate. Science , 2012, 338(6104): 264-266. [107] Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA , 2007, 104(40): 15876-15881. [108] Mellbye B, Schuster M. The sociomicrobiology of antivirulence drug resistance: a proof of concept. MBio , 2011, 2(5): e00131-11. [109] Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi . J Bacteriol , 2004, 186(20): 6902-6914. [110] Even-Tov E, Omer Bendori S, Valastyan J, Ke XB, Pollak S, Bareia T, Ben-Zion I, Bassler BL, Eldar A. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol , 2016, 14(2): e1002386. [111] Smith J, Van Dyken JD, Velicer GJ. Nonadaptive processes can create the appearance of facultative cheating in microbes. Evolution , 2014, 68(3): 816-826. |
[1] | 梁志彬, 陈豫梅, 陈昱帆, 程莹莹, 张炼辉. RND家族外排泵及其与微生物群体感应系统的相互关系[J]. 遗传, 2016, 38(10): 894-901. |
[2] | 陈林,杨亮,段康民. 从进化谈细菌细胞间的群体感应信号传递[J]. 遗传, 2012, 34(1): 33-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: