[1] Neu HC. The crisis in antibiotic resistance. Science , 1992, 257(5073): 1064-1073. [2] Lv JY, Qu F. Multidrug-resistant microorganism and prevention measures. Beijing: People's Military Medical Press. 2011. 吕吉云, 曲芬. 多重耐药微生物及防治对策. 北京: 人民军医出版社, 2011. [3] WHO. Antimicrobial resistance: global report on surveillance. Geneva: WHO, 2014. [4] Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol , 2013, 303(6-7): 287-292. [5] Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tümmler B, Baquero F, Martínez JL. The neglected intrinsic resistome of bacterial pathogens. PLoS One , 2008, 3(2): e1619. [6] Olivares J, Bernardini A, Garcia-Leon G, Corona F, Sanchez MB, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol , 2013, 4: 103. [7] Perry JA, Westman EL, Wright GD. The antibiotic resistome: what's new?. Curr Opin Microbiol , 2014, 21: 45-50. [8] Yoon EJ, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph (3')-VI. mBio , 2014, 5(5): e01972-14. [9] Yoon EJ, Goussard S, Nemec A, Lambert T, Courvalin P, Grillot-Courvalin C. Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6')-Ih. J Antimicrob Chemother , 2016, 71(3): 601- 606. [10] Nikaido H, Nikaido K, Harayama S. Identification and characterization of porins in Pseudomonas aeruginosa . J Biol Chem , 1991, 266(2): 770-779. [11] Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev , 2012, 25(4): 661-681. [12] Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa : clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev , 2009, 22(4): 582-610. [13] Nikaido H. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol , 2001, 12(3): 215-223. [14] Nikaido H. The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria. Can we improve drug access?. Drug Resist Updat , 1998, 1(2): 93-98. [15] Lee A, Mao WM, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol , 2000, 182(11): 3142-3150. [16] Paul S, Alegre KO, Holdsworth SR, Rice M, Brown JA, McVeigh P, Kelly SM, Law CJ. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol Microbiol , 2014, 92(4): 872-884. [17] Tikhonova EB, Wang QJ, Zgurskaya HI. Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J Bacteriol , 2002, 184(23): 6499-6507. [18] Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ, Miller GH, Hare R, Shimer G. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother , 2001, 45(4): 1126-1136. [19] Rice LB. Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa . Clin Infect Dis , 2006, 43 (Suppl. 2): S100-S105. [20] Perreten V, Schwarz FV, Teuber M, Levy SB. Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli . Antimicrob Agents Chemother , 2001, 45(4): 1109-1114. [21] Blanc V, Salah-Bey K, Folcher M, Thompson CJ. Molecular characterization and transcriptional analysis of a multidrug resistance gene |