[1] Neu HC. The crisis in antibiotic resistance. Science , 1992, 257(5073): 1064-1073. [2] Lv JY, Qu F. Multidrug-resistant microorganism and prevention measures. Beijing: People's Military Medical Press. 2011. 吕吉云, 曲芬. 多重耐药微生物及防治对策. 北京: 人民军医出版社, 2011. [3] WHO. Antimicrobial resistance: global report on surveillance. Geneva: WHO, 2014. [4] Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol , 2013, 303(6-7): 287-292. [5] Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tümmler B, Baquero F, Martínez JL. The neglected intrinsic resistome of bacterial pathogens. PLoS One , 2008, 3(2): e1619. [6] Olivares J, Bernardini A, Garcia-Leon G, Corona F, Sanchez MB, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol , 2013, 4: 103. [7] Perry JA, Westman EL, Wright GD. The antibiotic resistome: what's new?. Curr Opin Microbiol , 2014, 21: 45-50. [8] Yoon EJ, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph (3')-VI. mBio , 2014, 5(5): e01972-14. [9] Yoon EJ, Goussard S, Nemec A, Lambert T, Courvalin P, Grillot-Courvalin C. Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6')-Ih. J Antimicrob Chemother , 2016, 71(3): 601- 606. [10] Nikaido H, Nikaido K, Harayama S. Identification and characterization of porins in Pseudomonas aeruginosa . J Biol Chem , 1991, 266(2): 770-779. [11] Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev , 2012, 25(4): 661-681. [12] Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa : clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev , 2009, 22(4): 582-610. [13] Nikaido H. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol , 2001, 12(3): 215-223. [14] Nikaido H. The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria. Can we improve drug access?. Drug Resist Updat , 1998, 1(2): 93-98. [15] Lee A, Mao WM, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol , 2000, 182(11): 3142-3150. [16] Paul S, Alegre KO, Holdsworth SR, Rice M, Brown JA, McVeigh P, Kelly SM, Law CJ. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol Microbiol , 2014, 92(4): 872-884. [17] Tikhonova EB, Wang QJ, Zgurskaya HI. Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J Bacteriol , 2002, 184(23): 6499-6507. [18] Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw KJ, Miller GH, Hare R, Shimer G. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother , 2001, 45(4): 1126-1136. [19] Rice LB. Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa . Clin Infect Dis , 2006, 43 (Suppl. 2): S100-S105. [20] Perreten V, Schwarz FV, Teuber M, Levy SB. Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli . Antimicrob Agents Chemother , 2001, 45(4): 1109-1114. [21] Blanc V, Salah-Bey K, Folcher M, Thompson CJ. Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin- producing organism, Streptomyces pristinaespiralis . Mol Microbiol , 1995, 17(5): 989-999. [22] Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol , 1999, 31(1): 394-395. [23] Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA , associated with fluoroquinolone resistance in Streptococcus pneumoniae . Antimicrob Agents Chemother , 1999, 43(1): 187-189. [24] El Garch F, Lismond A, Piddock LJV, Courvalin P, Tulkens PM, Van Bambeke F. Fluoroquinolones induce the expression of patA and patB , which encode ABC efflux pumps in Streptococcus pneumoniae . J Antimicrob Chemother , 2010, 65(10): 2076-2082. [25] Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta , 2008, 1778(9): 1814-1838. [26] Distler J, Ebert A, Mansouri K, Pissowotzkri K, Stockmann M, Piepersberg W. Gene cluster for streptomycin biosynthesis in Streptomyces griseus : nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res , 1987, 15(19): 8041-8056. [27] Vögtli M, Hütter R. Characterisation of the hydroxystreptomycin phosphotransferase gene ( sph ) of Streptomyces glaucescens : nucleotide sequence and promoter analysis. Mol Gen Genet , 1987, 208(1-2): 195-203. [28] Noguchi N, Sasatsu M, Kono M. Genetic mapping in Bacillus subtilis 168 of the aadK gene which encodes aminoglycoside 6-adenylyltransferase. FEMS Microbiol Lett , 1993, 114(1): 47-52. [29] Spanogiannopoulos P, Waglechner N, Koteva K, Wright GD. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc Nat Acad Sci USA , 2014, 111(19): 7102-7107. [30] Wang C, Sui ZH, Leclercq SO, Zhang G, Zhao ML, Chen WQ, Feng J. Functional characterization and phylogenetic analysis of acquired and intrinsic macrolide phosphotransferases in the Bacillus cereus group. Environ Microbiol , 2015, 17(5): 1560-1573. [31] Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev, 2014, 27(2): 241-263. [32] Zincke D, Balasubramanian D, Silver LL, Mathee K. Characterization of a carbapenem-hydrolyzing enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother , 2016, 60(2): 936-945. [33] Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol , 2008, 9(4): R74. [34] Okazaki A, Avison MB. Aph(3')-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother , 2007, 51(1): 359-360. [35] Hu LF, Ye Y, Shen WH, Li JB, Li X. Study of mechanism about intrinsic and acquired resistance in Stenotrophomonas maltophilia strains. Chin J Antibiot , 2011, 36(9): 654-658. 胡立芬, 叶英, 沈为华, 李家斌, 李旭. 嗜麦芽窄食单胞菌的天然及获得性耐药机制研究进展. 中国抗生素杂志, 2011, 36(9): 654-658. [36] Chiou J, Li RC, Chen S. CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus . Antimicrob Agents Chemother , 2015, 59(6): 3593-3595. [37] Liu A, Tran L, Becket E, Lee K, Chinn L, Park E, Tran K, Miller JH. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother , 2010, 54(4): 1393-1403. [38] Blake KL, O'Neill AJ. Transposon library screening for identification of genetic loci participating in intrinsic susceptibility and acquired resistance to antistaphylococcal agents. J Antimicrob Chemother , 2013, 68(1): 12-16. [39] Knight D, Dimitrova DD, Rudin SD, Bonomo RA, Rather PN. Mutations decreasing intrinsic β-lactam resistance are linked to cell division in the nosocomial pathogen Acinetobacter baumannii . Antimicrob Agents Chemother , 2016, 60(6): 3751-3758. [40] D'Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science , 2006, 311 (5759): 374-377. [41] Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol , 2007, 5(3): 175-186. [42] Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev , 2002, 66(4): 671-701. [43] Kao CY, Chen SS, Hung KH, Wu HM, Hsueh PR, Yan JJ, Wu JJ. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol , 2016, 16(1): 107. [44] Pan YP, Xu YH, Wang ZX, Fang YP, Shen JL. Overexpression of MexAB-OprM efflux pump in carbapenem- resistant Pseudomonas aeruginosa . Arch Microbiol , 2016, 198(6): 565-571. [45] Choudhury D, Ghosh A, Chanda DD, Talukdar AD, Choudhury MD, Paul D, Maurya AP, Chakravarty A, Bhattacharjee A. Premature termination of MexR leads to overexpression of MexAB-OprM efflux pump in Pseudomonas aeruginosa in a tertiary referral hospital in India. PLoS One , 2016, 11(2): e0149156. [46] Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother , 2011, 55(3): 947-953. [47] Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother , 2004, 48(9): 3298-3304. [48] Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P, Dé E, Grillot-Courvalin C. Contribution of resistance- nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii . mBio , 2015, 6(2): e00309-15. [49] Coyne S, Rosenfeld N, Lambert T, Courvalin P, Périchon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii . Antimicrob Agents Chemother , 2010, 54(10): 4389-4393. [50] Magnet S, Courvalin P, Lambert T. Activation of the cryptic aac ( 6 ')- Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol , 1999, 181(21): 6650-6655. [51] Koskiniemi S, Pränting M, Gullberg E, Näsvall J, Andersson DI. Activation of cryptic aminoglycoside resistance in Salmonella enterica . Mol Microbiol , 2011, 80(6): 1464- 1478. [52] Smith CA, Antunes NT, Stewart NK, Frase H, Toth M, Kantardjieff KA, Vakulenko S. Structural basis for enhancement of carbapenemase activity in the OXA-51 family of class D β-lactamases. ACS Chem Biol , 2015, 10(8): 1791-1796. [53] Mitchell JM, Leonard DA. Common clinical substitutions enhance the carbapenemase activity of OXA-51-like class D β-lactamases from Acinetobacter spp. Antimicrob Agents Chemother , 2014, 58(11): 7015-7016. [54] Lambert T, Ploy MC, Courvalin P. A spontaneous point mutation in the aac(6')-Ib ' gene results in altered substrate specificity of aminoglycoside 6'- N -acetyltransferase of a Pseudomonas fluorescens strain. FEMS Microbiol Lett , 1994, 115(2-3): 297-304. [55] Yin JH, Sun LL, Dong YY, Chi X, Zhu WM, Qi SH, Gao HC. Expression of blaA underlies unexpected ampicillin-induced cell lysis of Shewanella oneidensis . PLoS One , 2013, 8(3): e60460. [56] Yin JH, Sun YY, Mao YT, Jin M, Gao HC. PBP1a/ LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis . Antimicrob Agents Chemother , 2015, 59(6): 3357-3364. [57] Martínez P, Mattar S. Imipenem-resistant Acinetobacter baumannii carrying the ISAba1 - bla OXA-23, 51 and ISAba1 - bla ADC-7 genes in Monteria, Colombia. Braz J Microbiol , 2012, 43(4): 1274-1280. [58] Mu XQ, Nakano R, Nakano A, Ubagai T, Kikuchi-Ueda T, Tansho-Nagakawa S, Kikuchi H, Kamoshida G, Endo S, Yano H, Ono Y. Loop-mediated isothermal amplification: rapid and sensitive detection of the antibiotic resistance gene IS Aba1-bla OXA-51-like in Acinetobacter baumannii . J Microbiol Methods , 2016, 121: 36-40. [59] Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother , 2005, 56(3): 463-469. [60] Poirel L, Liard A, Rodriguez-Martinez JM, Nordmann P. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. J Antimicrob Chemother , 2005, 56(6): 1118-1121. |