[1] | Dong ED, Hu H, Yu WH. A fundamental role of biobank in biomedical research. Sci Sin Vitae, 2015, 45(4): 359-370. | [1] | 董尔丹, 胡海, 俞文华. 生物样本库是生物医学研究的重要基础. 中国科学: 生命科学, 2015, 45(4): 359-370. | [2] | Chu JY. Chinese national immortalized cell bank: theory and practice. Shanghai: Shanghai Scientific and Technical Publisher, 2009. | [2] | 褚嘉佑. 中华民族永生细胞库的建立——理论与实践. 上海: 上海科学技术出版社, 2009. | [3] | Kumar S, Curran JE, Glahn DC, Blangero J. Utility of lymphoblastoid cell lines for induced pluripotent stem cell generation. Stem Cells Int, 2016, 2016: 2349261, doi: 10.1155/2016/2349261. | [4] | Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L, Bodmer J, Bodmer WF, Bonne-Tamir B, Cambon-Thomsen A, Chen Z, Chu J, Carcassi C, Contu L, Du R, Excoffier L, Ferrara GB, Friedlaender JS, Groot H, Gurwitz D, Jenkins T, Herrera RJ, Huang X, Kidd J, Kidd KK, Langaney A, Lin AA, Mehdi SQ, Parham P, Piazza A, Pistillo MP, Qian Y, Shu Q, Xu J, Zhu S, Weber JL, Greely HT, Feldman MW, Thomas G, Dausset J, Cavalli-Sforza LL. A human genome diversity cell line panel. Science, 2002, 296(5566): 261-262. | [5] | Chu JY, Huang W, Kuang SQ, Wang JM, Xu JJ, Chu ZT, Yang ZQ, Lin KQ, Li P, Wu M, Geng ZC, Tan CC, Du RF, Jin L. Genetic relationship of populations in China. Proc Natl Acad Sci USA, 1998, 95(20): 11763-11768. | [6] | Qian YP, Chu ZT, Dai Q, Wei CD, Chu JY, Tajima A, Horai S. Mitochondrial DNA polymorphisms in Yunnan nationalities in China. J Hum Genet, 2001, 46(4): 211-220. | [7] | Shirley MD, Baugher JD, Stevens EL, Tang ZY, Gerry N, Beiswanger CM, Berlin DS, Pevsner J. Chromosomal variation in lymphoblastoid cell lines. Hum Mutat, 2012, 33(7): 1075-1086. | [8] | ?berg K, Khachane AN, Rudolf G, Nerella S, Fugman DA, Tischfield JA, van den Oord EJ. Methylome-wide comparison of human genomic DNA extracted from whole blood and from EBV-transformed lymphocyte cell lines. Eur J Hum Genet, 2012, 20(9): 953-955. | [9] | Shim SM, Jung SY, Nam HY, Kim HR, Lee MH, Kim JW, Han BG, Jeon JP. Network signatures of cellular immortalization in human lymphoblastoid cell lines. Biochem Biophys Res Commun, 2013, 441(2): 438-446. | [10] | Cheng ZS, Chu H, Fan YH, Li C, Song YQ, Zhou J, Yuen KY. PExFInS: An integrative post-GWAS explorer for functional indels and SNPs. Sci Rep, 2015, 5: 17302. | [11] | Abduljaleel Z, Al-Allaf FA, Khan W, Athar M, Shahzad N, Taher MM, Alanazi M, Elrobh M, Reddy NP. DNA mismatch repair MSH2 gene-based SNP associated with different populations. Mol Genet Genomics, 2014, 289(3): 469-487. | [12] | Chen DH, Below JE, Shimamura A, Keel SB, Matsushita M, Wolff J, Sul Y, Bonkowski E, Castella M, Taniguchi T, Nickerson D, Papayannopoulou T, Bird TD, Raskind WH. Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet, 2016, 98(6): 1146-1158. | [13] | Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR, Greenside P, Srivas R, Phanstiel DH, Pekowska A, Heidari N, Euskirchen G, Huber W, Pritchard JK, Bustamante CD, Steinmetz LM, Kundaje A, Snyder M. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell, 2015, 162(5): 1051-1065. | [14] | Hu Y, Xiong Q, Yang YD, Wang H, Shu C, Xu W, Fang XD, Hu SN. Integrated analysis of gene expression and microRNA regulation in three leukemia-related lymphoblastic cell lines. Gene, 2015, 564(1): 39-52. | [15] | Sasakawa A, Hirase C, Yamaguchi T, Morita Y, Miyatake J, Matsumura I, Maeda Y. Interleukin-8 in the pathogenesis of primary central nervous system lymphoma in association with HIV infection. Hematology, 2012, 17(3): 144-150. | [16] | Moey C, Hinze SJ, Brueton L, Morton J, McMullan DJ, Kamien B, Barnett CP, Brunetti-Pierri N, Nicholl J, Gecz J, Shoubridge C. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. Eur J Hum Genet, 2016, 24(3): 373-380. | [17] | Coskun P, Helguera P, Nemati Z, Bohannan RC, Thomas J, Samuel SE, Argueta J, Doran E, Wallace DC, Lott IT, Busciglio J. Metabolic and growth rate alterations in lymphoblastic cell lines discriminate between down syndrome and alzheimer's disease. J Alzheimers Dis, 2017, 55(2): 737-748. | [18] | Wheeler HE, Gamazon ER, Wing C, Njiaju UO, Njoku C, Baldwin RM, Owzar K, Jiang C, Watson D, Shterev I, Kubo M, Zembutsu H, Winer EP, Hudis CA, Shulman LN, Nakamura Y, Ratain MJ, Kroetz DL, Cox NJ, Dolan ME. Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy. Clin Cancer Res, 2013, 19(2): 491-499. | [19] | McElrath MJ, Rabin M, Hoffman M, Klucking S, Garcia JV, Greenberg PD. Evaluation of human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte responses utilizing B-lymphoblastoid cell lines transduced with the CD4 gene and infected with HIV-1. J Virol, 1994, 68(8): 5074-5083. | [20] | Livingston PG, Kurane I, Ennis FA. Use of Epstein-Barr virus-transformed, autologous B-lymphoblastoid cells as antigen-presenting cells for establishment and maintenance of dengue virus-specific, human cytotoxic T lymphocyte clones. J Virol Methods, 1997, 67(1): 77-84. | [21] | Hill AB, Lee SP, Haurum JS, Murray N, Yao QY, Rowe M, Signoret N, Rickinson AB, McMichael AJ. Class I major histocompatibility complex-restricted cytotoxic T lymphocytes specific for Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines against which they were raised. J Exp Med, 1995, 181(6): 2221-2228. | [22] | Kubuschok B, Cochlovius C, Jung W, Schmits R, Trümper L, Hartmann F, Renner C, Pfreundschuh M. Gene-modified spontaneous Epstein-Barr virus-transformed lymphoblastoid cell lines as autologous cancer vaccines: mutated p21 ras oncogene as a model. Cancer Gene Ther, 2000, 7(9): 1231-1240. | [23] | Kubuschok B, Schmits R, Hartmann F, Cochlovius C, Breit R, K?nig J, Pistorius G, Schilling M, Renner C, Pfreundschuh M. Use of spontaneous Epstein-Barr virus-lymphoblastoid cell lines genetically modified to express tumor antigen as cancer vaccines: mutated p21 ras oncogene in pancreatic carcinoma as a model. Hum Gene Ther, 2002, 13(7): 815-827. | [24] | Kubuschok B, Pfreundschuh M, Breit R, Hartmann F, Sester M, G?rtner B, K?nig J, Murawski N, Held G, Zwick C, Neumann F. Mutated Ras-transfected, EBV-transformed lymphoblastoid cell lines as a model tumor vaccine for boosting T-cell responses against pancreatic cancer: a pilot trial. Hum Gene Ther, 2012, 23(12): 1224-1236. | [25] | Neumann F, Kaddu-Mulindwa D, Widmann T, Preuss KD, Held G, Zwick C, Roemer K, Pfreundschuh M, Kubuschok B. EBV-transformed lymphoblastoid cell lines as vaccines against cancer testis antigen-positive tumors. Cancer Immunol Immunother, 2013, 62(7): 1211-1222. | [26] | De Flora S, La Maestra S. Epidemiology of cancers of infectious origin and prevention strategies. J Prev Med Hyg, 2015, 56(1): E15-E20. | [27] | Okugawa K, Itoh T, Kawashima I, Takesako K, Mazda O, Nukaya I, Yano Y, Yamamoto Y, Yamagishi H, Ueda Y. Recognition of Epstein-Barr virus-associated gastric carcinoma cells by cytotoxic T lymphocytes induced in vitro with autologous lymphoblastoid cell line and LMP2-derived, HLA-A24-restricted 9-mer peptide. Oncol Rep, 2004, 12(4): 725-731. | [28] | Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G, Khalil M, Wu MF, Huls MH, Chang CC, Gresik MV, Gee AP, Brenner MK, Rooney CM, Heslop HE. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood, 2007, 110(8): 2838-2845. | [29] | Sánchez-Martínez D, Azaceta G, Muntasell A, Aguiló N, Nú?ez D, Gálvez EM, Naval J, Anel A, Palomera L, Vilches C, Marzo I, Villalba M, Pardo J. Human NK cells activated by EBV + lymphoblastoid cells overcome anti-apoptotic mechanisms of drug resistance in haematological cancer cells. Oncoimmunology, 2015, 4(3): e991613. | [30] | Jack J, Rotroff D, Motsinger-Reif A. Lymphoblastoid cell lines models of drug response: successes and lessons from this pharmacogenomic model. Curr Mol Med, 2014, 14(7): 833-840. | [31] | Zhang W, Dolan ME. Impact of the 1000 genomes project on the next wave of pharmacogenomic discovery. Pharmacogenomics, 2010, 11(2): 249-256. | [32] | Zhang W, Zheng YN, Hou LF. Pharmacogenomic discovery delineating the genetic basis of drug response. Curr Genet Med Rep, 2013, 1(3): 143-149. | [33] | Huang RS, Johnatty SE, Gamazon ER, Im HK, Ziliak D, Duan SW, Zhang W, Kistner EO, Chen PX, Beesley J, Mi SL, O'Donnell PH, Fraiman YS, Das S, Cox NJ, Lu Y, MacGregor S, Goode EL, Vierkant RA, Fridley BL, Hogdall E, Kjaer SK, Jensen A, Moysich KB, Grasela M, Odunsi K, Brown R, Paul J, Lambrechts D, Despierre E, Vergote I, Gross J, Karlan BY, deFazio A, Chenevix-Trench G, Dolan ME. Platinum sensitivity-related germline polymorphism discovered via a cell-based approach and analysis of its association with outcome in ovarian cancer patients. Clin Cancer Res, 2011, 17(16): 5490-5500. | [34] | Li L, Fridley BL, Kalari K, Niu NF, Jenkins G, Batzler A, Abo RP, Schaid D, Wang LW. Discovery of genetic biomarkers contributing to variation in drug response of cytidine analogues using human lymphoblastoid cell lines. BMC Genomics, 2014, 15: 93. | [35] | Brown CC, Havener TM, Medina MW, Jack JR, Krauss RM, McLeod HL, Motsinger-Reif AA. Genome-wide association and pharmacological profiling of 29 anticancer agents using lymphoblastoid cell lines. Pharmacogenomics, 2014, 15(2): 137-146. | [36] | Niu NF, Liu T, Cairns J, Ly RC, Tan XL, Deng M, Fridley BL, Kalari KR, Abo RP, Jenkins G, Batzler A, Carlson EE, Barman P, Moran S, Heyn H, Esteller M, Wang LW. Metformin pharmacogenomics: a genome-wide association study to identify genetic and epigenetic biomarkers involved in metformin anticancer response using human lymphoblastoid cell lines. Hum Mol Genet, 2016, doi: 10.1093/hmg/ddw301. | [37] | Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Rehavi M, Stingl JC, Gurwitz D. Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics, 2012, 13(10): 1129-1139. | [38] | Komatsu M, Wheeler HE, Chung S, Low SK, Wing C, Delaney SM, Gorsic LK, Takahashi A, Kubo M, Kroetz DL, Zhang W, Nakamura Y, Dolan ME. Pharmacoethnicity in paclitaxel-induced sensory peripheral neuropathy. Clin Cancer Res, 2015, 21(19): 4337-4346. | [39] | Hillger JM, Schoop J, Boomsma DI, Slagboom PE, IJzerman AP, Heitman LH. Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines. Biosens Bioelectron, 2015, 74: 233-242. | [40] | Patton JT, Lustberg ME, Lozanski G, Garman SL, Towns WH, Drohan CM, Lehman A, Zhang XL, Bolon B, Pan L, Kinghorn AD, Grever MR, Lucas DM, Baiocchi RA. The translation inhibitor silvestrol exhibits direct anti-tumor activity while preserving innate and adaptive immunity against EBV-driven lymphoproliferative disease. Oncotarget, 2015, 6(5): 2693-2708. | [41] | Xiang Z, Liu YP, Zheng J, Liu M, Lv AZ, Gao YL, Hu HD, Lam KT, Chan GCF, Yang YZ, Chen HL, Tsao GSW, Bonneville M, Lau YL, Tu WW. Targeted activation of human Vγ9Vδ2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell, 2014, 26(4): 565-576. | [42] | Fujimori K, Tezuka T, Ishiura H, Mitsui J, Doi K, Yoshimura J, Tada H, Matsumoto T, Isoda M, Hashimoto R, Hattori N, Takahashi T, Morishita S, Tsuji S, Akamatsu W, Okano H. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Mol Brain, 2016, 9(1): 88. | [43] | Bueno C, Sardina JL, Di Stefano B, Romero-Moya D, Mu?oz-López A, Ariza L, Chillón MC, Balanzategui A, Casta?o J, Herreros A, Fraga MF, Fernández A, Granada I, Quintana-Bustamante O, Segovia JC, Nishimura K, Ohtaka M, Nakanishi M, Graf T, Menendez P. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα. Leukemia, 2016, 30(3): 674-682. | [44] | Barrett R, Ornelas L, Yeager N, Mandefro B, Sahabian A, Lenaeus L, Targan SR, Svendsen CN, Sareen D. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines. Stem Cells Transl Med, 2014, 3(12): 1429-1434. | [45] | Rajesh D, Dickerson SJ, Yu JY, Brown ME, Thomson JA, Seay NJ. Human lymphoblastoid B-cell lines reprogrammed to EBV-free induced pluripotent stem cells. Blood, 2011, 118(7): 1797-1800. | [46] | Choi SM, Liu H, Chaudhari P, Kim Y, Cheng LZ, Feng J, Sharkis S, Ye ZH, Jang YY. Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood, 2011, 118(7): 1801-1805. | [47] | Thomas SM, Kagan C, Pavlovic BJ, Burnett J, Patterson K, Pritchard JK, Gilad Y. Reprogramming LCLs to iPSCs results in recovery of donor-specific gene expression signature. PLoS Genet, 2015, 11(5): e1005216. | [48] | Laroche-Traineau J, Clofent-Sanchez G, Daret D, Bonnaud E, Barat JL, Ducassou D, Nurden AT. A human monoclonal antibody obtained from EBV-transformed B cells with specificity for myosin. Br J Haematol, 1995, 91(4): 951-962. | [49] | Sa'adu A, Walker H, Locniskar M, Bidwell D, Howard C, McAdam KPWJ, Voller A. Comparison of an EBV transformed cell line and an EBV hybridoma cell line producing the same human anti-HBs monoclonal antibody. J Virol Methods, 1992, 37(1): 1-11. | [50] | Amadori A, Ciminale V, Calabro ML, Tessarollo L, Francavilla E, Chieco-Bianchi L. Human monoclonal antibody against a gag-coded protein of human immunodeficiency virus produced by a stable EBV-transformed cell clone. AIDS Res Hum Retroviruses, 1989, 5(1): 73-78. | [51] | Thompson KM, Hough DW, Maddison PJ, Melamed MD, Hughes-Jones N. The efficient production of stable, human monoclonal antibody-secreting hybridomas from EBV-transformed lymphocytes using the mouse myeloma X63-Ag8.653 as a fusion partner. J Immunol Methods, 1986, 94(1-2): 7-12. | [52] | Kozbor D, Roder JC, Chang TH, Steplewski Z, Koprowski H. Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma. Hybridoma, 1982, 1(3): 323-328. | [53] | Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol, 2007, 18(6): 523-528. | [54] | Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med, 2004, 10(8): 871-875. | [55] | Simmons CP, Bernasconi NL, Suguitan AL Jr, Mills K, Ward JM, Chau NVV, Hien TT, Sallusto F, Ha DQ, Farrar J, de Jong MD, Lanzavecchia A, Subbarao K. Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med, 2007, 4(5): e178. | [56] | Tabll A, El Abd Y, El Din NG, El Shenawy R, Abdelhafez TH, El Awady M, El-Mohamady H, Viazov S. Establishment of human clones producing neutralizing human monoclonal antibodies to the envelope E1/E2 protein of hepatitis C virus by EBV immortalization of immune CD22 + B cells. Hum Antibodies, 2013, 22(3-4): 55-65. | [57] | Fraussen J, Vrolix K, Martinez-Martinez P, Losen M, Meulemans E, De Baets MH, Stinissen P, Somers V. A novel method for making human monoclonal antibodies. J Autoimmun, 2010, 35(2): 130-134. | [58] | Ali AI, Badran YR, Hassuneh MR, Sanber KS, Ismail SI. Effect of interleukins on antibody production by Epstein-Barr virus transformed B Cells. Monoclon Antib Immunodiagn Immunother, 2015, 34(3): 162-168. | [59] | Hu HX, Voss J, Zhang GL, Buchy P, Zuo T, Wang LL, Wang F, Zhou F, Wang GQ, Tsai C, Calder L, Gamblin SJ, Zhang LQ, Deubel V, Zhou BP, Skehel JJ, Zhou P. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses. J Virol, 2012, 86(6): 2978-2989. | [60] | Smith SA, Silva LA, Fox JM, Flyak AI, Kose N, Sapparapu G, Khomandiak S, Ashbrook AW, Kahle KM, Fong RH, Swayne S, Doranz BJ, McGee CE, Heise MT, Pal P, Brien JD, Austin SK, Diamond MS, Dermody TS, Crowe JE Jr. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against chikungunya virus. Cell Host Microbe, 2015, 18(1): 86-95. | [61] | Warter L, Lee CY, Thiagarajan R, Grandadam M, Lebecque S, Lin RTP, Bertin-Maghit S, Ng LFP, Abastado JP, Desprès P, Wang CI, Nardin A. Chikungunya virus envelope-specific human monoclonal antibodies with broad neutralization potency. J Immunol, 2011, 186(5): 3258-3264. | [62] | Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S, Johnson S, Lee I, Akahata W, Nabel GJ, Richter MKS, Smit JM, Fremont DH, Pierson TC, Heise MT, Diamond MS. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog, 2013, 9(4): e1003312. | [63] | Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A. Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8+ T cells. PLoS Pathog, 2015, 11(6): e1004906. | [64] | Wang Z, Deng Z, Dahmane N, Tsai K, Wang P, Williams DR, Kossenkov AV, Showe LC, Zhang RG, Huang QH, Conejo-Garcia JR, Lieberman PM. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc Natl Acad Sci USA, 2015, 112(46): E6293-E6300. | [65] | Klinker MW, Lizzio V, Reed TJ, Fox DA, Lundy SK. Human B cell-derived lymphoblastoid cell Lines constitutively produce fas ligand and secrete MHCII +FasL + killer exosomes. Front Immunol, 2014, 5: 144. | [66] | Nunez G, Seto M, Seremetis S, Ferrero D, Grignani F, Korsmeyer SJ, Dalla-Favera R. Growth- and tumor-promoting effects of deregulated BCL2 in human B-lymphoblastoid cells. Proc Natl Acad Sci USA, 1989, 86(12): 4589-4593. | [67] | Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, Johannsen E. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog, 2015, 11(4): e1004822. |
|